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2 
Realizing Logic in Hardware 
REPRESENTING TRUE AND FALSE WITH PHYSICAL DEVICES 
Boolean algebra and truth tables are our tools for expressing logical relationships. To 
use these tools in the real world, we must have some physical way to represent TRUE 
and FALSE, the fundamental constants of logic. Digital systems record T and F 
in several ways: 

(a) Punched cards. An old technology going back to Babbabge, and before 
then to Jacquard’s loom (1801). A hole punched at a given spot in the card 
might represent TRUE; no hole at that spot would then represent FALSE. 

(b) Magnetic tapes or disks. Magnetic tapes or disks represent logic data with 
magnetized areas on the recording surface. The designer might choose a 
south pole sticking out of the surface to be a 1, in which case a north 
pole would be 0. 

(c) Switches. A switch has two states, closed and open. The digital designer 
may choose either state (but not both!) to represent logic truth; for 
example, an open switch may represent 1. 

(d) Voltages. In digital electronic circuits, T and F are represented by 
voltage. For instance, the popular CMOS family of digital circuits 
produces two voltage levels: ~0 V  and ~1.8 V. 

Each of these four examples has only two states—in a punched card either there 
is a hole or there is not a hole. This two-valued, or binary, characteristic of the 
digital world makes Boolean algebra the natural way to formalize the behavior of these 
physical devices. Conversely, the need to implement logical constructs in physical 
devices makes these binary devices useful. If more than two values existed, more 
complex algebras would be needed to handle the multiplicity of values. Perhaps 
fortunately, engineers have had only limited success in designing reliable 
nonbinary devices. It is questionable whether multi-valued devices would be 
desirable, since the resulting systems would be harder to troubleshoot. In practice, 
it is important to know that any signal can have only two values, TRUE or 
FALSE. 

The designer may select the physical representation for T and F. In a punched 
card, representing 1 with a hole seems natural, but such an assignment is not a 
logical necessity. With equal validity, we could let the absence of a hole represent 1. 
On magnetic discs either a north or a south pole can be a 1; both conventions exist. 
The same is true of switches. 

In this book, we will use electronic logic circuits extensively. We let H stand for the 
high-output voltage level of a digital device and let L stand for the low-output 
voltage level. Each family of devices has its own H and L output voltage ranges. 
In CMOS, 0 and +5 volts are often used to interface between devices while internal 
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H,L voltages are usually lower depending on device geometry. Actual values are of 
little importance for synthesis since the abstraction to H,L is perfectly serviceble. In 
this chapter, we will use simple devices to build the basic logic functions 
described in Chapter 1; historically, each such device is called a gate. Here we 
concentrate on gates—the basic tools for realizing logic equations. In Chapters 3 
and 4, you will meet more complex elements constructed from gates. 

Like other forms of digital devices, electronic logic circuits offer a choice for 
representing T and F. Be flexible in your choice. Sometimes it is advantageous to let 
H represent T and to let L represent F; at other times the converse is more 
convenient. Either will do, if you let the rest of the world know your choice. 

MIXED LOGIC: REPRESENTING AND, OR, and NOT 
We may represent logic truth by either of the two voltage levels in a digital electronic 
device. If we apply this notion faithfully, a powerful and beautiful design tool 
emerges as we represent logic equations with physical hardware. We now undertake 
the development of clear and systematic ways of building and describing hardware 
circuits for logic expressions. Efforts at solving digital problems yield logic 
equations and logical structures; the hardware must faithfully embody these 
equations and structures. Furthermore, we certainly wish the documentation of 
our hardware (our circuit diagrams) to convey the spirit of the solution to the 
original problem. Documenting the hardware for a logic circuit is called digital 
drafting. 

The foregoing thoughts suggest some criteria for drafting methods: 

(a) We wish to synthesize (create) a physical realization of any logic expression 
directly from the logic, in a straightforward, natural, and rigorous 
manner. 

(b) We wish to be able to analyze (pick apart) a physical realization and directly 
recover the original logic expressions. 

These are strong conditions; many digital drafting and construction techniques in 
use today do not meet them. The conditions require that the circuit diagram 
clearly and fully display both the logic and hardware. We can identify several 
implications of these requirements: 

(1) The drafting notation should represent the Boolean expressions in AND, 
OR, and NOT form—the natural way we develop our logic. 

(2) The correspondence between a logical value (T or F) and its voltage 
counterpart (H or L) should be evident everywhere in the circuit 
diagram. 

(3) The notation should clearly identify each physical device in the circuit. The 
key to satisfying these requirements is a representation called mixed 
logic. This notation was first published in a coherent form in 1968(*) 

(*) P. M. Kintner, "Electronic Digital Techniques," McGraw Hill 1968; and 
F. Prosser and D. Winkel, "Mixed logic leads to maximum clarity with minimum 
hardware," Computer Design, May 1977, pp. 111-117. 
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But mixed logic was used in the Philco TRANSAC computers in 1957 and the 
technique is probably even older than that. We will develop mixed-logic 
methodology carefully, since the principle is vital to clear, top-down design. 

Mixed Logic 
Showing the logic. We choose a unique symbol for each of the natural logical 
operators. The following shapes represent the logical AND and OR operators:  

 
 

 
AND  OR 

Whenever we see these shapes, we know that we are representing a logical AND or a 
logical OR function. Furthermore, every logical AND and OR in our original 
expression will appear in the circuit diagram as the corresponding shape. 

Now we make a giant leap from pure mathematics to transistors. Transistors accept 
voltage inputs and produce voltage outputs. How can we map logic to voltage? In 
figure 2–1(a) the AND symbol is an abstraction representing an assemblage of 
transistors which accepts voltage on two wires, PDQ and X, and outputs a voltage 
on wire labeled Z. In 2–1(b) the OR symbol is an abstraction representing a 
different transistor structure which accepts voltages on wires labeled A,B and 
produces a voltage on wire labeled XYZ.  

  
(a) (b) 

Figure 2–1  

But what voltage represents Truth? Our circuit diagam must unambiguously convey 
what voltage represents truth on every wire, and also, imply a corresponding 
transistor structure that maps input voltages to an output voltage while preserving 
the logic implied by the symbol. (For the moment we will assume that such 
transistor structures exist). 

In circuit diagrams, graphic symbols imply a physical device that performs the logic 
operation. This can be a primitive gate on the surface of an integrated circuit, cells of 
a programmable gate array configured to implement the logic implied by the graphic 
symbol, or individual gates of an individually packaged integrated circuit, an obsolete 
technology largely of historical interest. Let's see how to record the voltage 
information on the diagram without altering the logic. 

Logic conventions. How does a device represent T and F? There are two logic 
levels (T and F) and two voltage levels (H and L). Two useful possibilities exist: 

(a) T is represented by H (and F is represented by L). 

(b) T is represented by L (and F is represented by H). 

The first form, with T = H, is called positive logic; the form with T = L is negative 
logic. When one of these relationships of truth and voltage is used consistently 
throughout a design, we refer to a positive-logic convention or a negative-logic 
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convention for the design. The mixed-logic convention—our convention—allows us to 
use positive or negative logic at any point in our design, as we desire. The clarity 
gained by this innocent-sounding step is enormous. 

Showing the device. In our exposition of mixed logic, we represent T = L by a small 
circle on the corresponding terminal of the logic symbol. The absence of a small 
circle means that T = H at that point. The circles do not change the logic operation. 
For example, each of the symbols in Figure 2–2 is a mixed-logic implementation of a 
logical AND function of two variables. We emphasize this point again: each of these 
symbols (and there are four more) represents a different physical realization of the 
same truth table: 

Logic 
Inputs Output 
F F F 
F T F 
T F F 
T T T 

 

 
Figure 2–2. Symbols for a logical AND 

To reiterate, we have left the pure logical operators of Chapter 1 and now deal with 
real physical devices to implement the logical AND. If you wish, consider the shape 
to represent the logic, and the presence or absence of small circles to be voltage 
polarities that will make each one of the four different transistor structures act like an 
AND. 

Each symbol defines a particular type of physical device. Since we know the logical 
truth table (because of the symbol's shape) and the voltage representation of truth on 
each input and output (by the presence or absence of circles), we can immediately 
write down the voltage table for any symbol. 

For example: 

 
= 

Logic 

= 

Voltage 
A B M A B M 
F F F L L H 
F T F L H H 
T F F H L H 
T T T H H L 

Here, the symbol completely defines the behavior of both the logic and the voltage. 
We hope that the voltage table is one readily implemented in CMOS (some of the 
AND gates in Figure 2–2 are not). This one is, and is usually referred to as a 2-input 
NAND. The term NAND arose historically from the view that this gate implemented 
the logical NAND (NOT AND) function in positive logic. The user of positive logic 
is forced into this interpretation, but since NAND is not a familiar and intuitive logic 
function, mixed logicians are not much interested in expressing logic in terms of 
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NANDs. We discuss the positive-logic convention later in this chapter. 

Another common CMOS device is the 2-Input NOR Gate. This device can perform 
the logical OR function when T = H at the inputs and T = L at the output: 

 
⇔ 

Logic 

⇔ 

Voltage 
P Q R P Q R 
F F F L L H 
F T T L H L 
T F T H L L 
T T T H H L 

The name NOR derives historically from conventional positive logic, in which this 
gate performs the logical NOR (NOT OR) function. 

Signal names in mixed logic. In a physical circuit, voltages represent values of the 
logic variables. We will refer to the actual voltage representation of a logic variable as 
a signal. When we label a circuit's inputs and outputs with the names of logic 
variables, we need a rule for also describing the voltage polarity of that variable at 
that point. Naming the logic variable is not enough; we must also name the signal. 
Here is the convention used in this book for creating names of signals that correspond 
to names of logic variables: 

If a signal has T = L, append a terminal L to the logic variable's name. If a signal has 
T = H, append a terminal H to the logic variable's name. For example, the logic 
variable PICK might appear in a circuit as the signal PICK.L or as PICK.H, 
depending on its particular voltage representation at that point in the circuit. The 
terminal L is always associated with a small circle on a line in the circuit diagram; the 
H form is always associated with a line having no circle: 

 
Understand two points thoroughly: 

(a) The logic variable is the same in both representations. PICK.H and PICK.L 
are two different ways of physically forming the logic variable PICK. 

(b) L does not mean that the voltage is low. Rather, it means that if the voltage 
is low, then the value of the logic variable is true. H is interpreted 
analogously. 

Frequently, a circuit diagram contains both signals for a logic variable (on different 
wires!). We display the voltage convention on the wires of the circuit diagram and 
also in the signals' names. You may think this is redundant, but it is an important aid 
to clarity. If you show line and signal notations rigorously, your diagrams will show 
all the logic and all the voltage information in the circuit, clearly and conveniently. 

Whenever it is necessary to write the name of a logic variable or signal more than 
once in a design, the need for the signal notation arises. This happens when signals 
appear on more than one page of the circuit diagram, when the designer prepares a 
master list of signal names for the circuit, and in other circumstances. Figure 2–3 
illustrates a common digital drafting situation. In the figure, a signal generated on one 
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page serves as an input elsewhere. With proper notation, there is never any doubt as 
to which signal is meant.  

 

Figure 2–3. Illstrating the need 
for a convention for naming  

signals 

Naming signals is important. The particular notation for distinguishing the two signals 
for a variable is not crucial as long as you are consistent. Some people prefer to 
append a + and − , or # and ↓, to a variable's name; others use a terminal / to indicate 
that T = L. There is no widely accepted standard convention. We use H and L in this 
book because of their strength in displaying voltage assignments. 

Using this signal convention, we reach the final form of the earlier AND 
implementation:  

  Logic  Voltage 

 = 

A B M 

= 

A.H B.H M.L 
F F F L L H 
F T F L H H 
T F F H L H 
F T T H H L 

AND/OR duals. Here is another example, this time for the OR operation: 

C.L
D.L N.H

 

= 

Logic 

= 

Voltage 
C D N C.L D.L N.H 
F F F H H L 
F T T H L H 
T F T L H H 
T T T L L H 

Inspect the voltage table. You can see that it is equivalent to the one in the previous 
example, and therefore again corresponds to the 2-input NAND gate. (Remember that 
truth tables display the same logic if rows are scrambled). But this time the logic 
operation is OR. In this particular use of OR, T = L at both inputs and T = H at the 
output. We have identified two uses for the 2-input NAND gate—to implement AND 
and to implement OR. The AND-OR duality of gate usage is always present, and is 
related to the principle of duality in Boolean algebra. On a given gate, the dual 
symbols for AND and OR have reversed circles. 

Similarly, you may derive mixed-logic notations for other devices. In Figure 2–4, we 
have drawn some common gates and have shown their mixed-logic symbols and their 
standard names. In practice, it is simple to find the mixed-logic uses of any gate 
directly, and the other one follows immediately by swapping AND-OR shapes and 
reversing the circles. Also, the conventional gate names are usually sufficient for 
writing down the mixed-logic symbols. Many integrated circuit technologies embody 
AND and OR, as well as NAND and NOR, giving us powerful and flexible tools for 
implementing the logic. 
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2-input NOR 
  

3-input NAND 
  

2-input AND 
  

Figure 2–4. Mixed logic symbols for various gates 

Some detailed circuit examples. To bring home the exact implications of the mixed-
logic notations, let's study the circuit in Figure 2–5. Figure 2–5 means: 

 
Figure 2–5. Schematic of Y=A•XY+Z•R11  

(a) There are two physical devices (both 2-input NAND gates) that 
function as logical ANDs when T = H at the inputs and T = L at the 
outputs. 

(b) There is another physical device (again a 2-input NAND gate) that 
functions as the logical OR when T = L at its inputs and T = H at its 
output. 

(c) There are seven wires carrying voltages for the logic variables A, XY, 
Z, R11, (A•XY), (Z•R11), and Y. 

(d) Truth (T) is represented by a high voltage (H) on signal wires A.H, 
XY.H, Z.H, R11.H, and Y.H. 

(e) Truth (T) is represented by a low voltage (L) on signal wires (A•XY).L 
and (Z•R11).L. 

(f) The circuit implements the logic equation Y = A•XY + Z•R11 

Consider another example, Figure 2–6. This drawing tells us: 

 
Figure 2–6. Schematic of A3=(P+R2)•AB  

(a) There is one physical device (a 2-input NAND gate) that functions as 
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the logical OR when T = L at its inputs and T = H at its output. 

(b) There is another physical device (again a 2-input NAND gate) that 
functions as the logical AND when T = H at its inputs and T = L at its 
output. 

(c) There are five wires carrying voltages for the logic variables P, R2,     
(P + R2), AB, and A3. 

(d) Truth (T) is represented by a high voltage (H) on signal wires        
(P + R2).H and AB.H. 

(e) Truth (T) is represented by a low voltage (L) on signal wires P.L, R2.L, 
and A3.L. 

(f) This circuit implements the logic equation A3 = AB•(P + R2). 

Figures 2–5 and 2–6 are straightforward illustrations of the mixed-logic drafting 
conventions. 

Mixed-Logic Theory 

With this introduction to basic notations, let's examine the theoretical basis of mixed 
logic. We will first consider the logical identity operation—one that we usually take 
for granted, but which provides important insight into the properties of mixed logic. 
Look at Figure 2–7. 

A logic variable A is the input to a box that performs the logical identity operation 
and produces Y as output: Y = A. The truth table for the behavior of the box is just 
that of the identity function. If we consider the possible voltage implementations of 
this box, we have four choices: A.H and Y.H; A.H and Y.L; A.L and Y.H; and A.L 
and Y.L. Each of these choices of voltage representation yields a voltage table, and 
each choice results in a different mixed-logic realization. As usual, we use mixed-
logic circles to indicate that T = L. 
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Logic 
A Y 
F F 
T T 

 
Four choices of voltage 

A.H Y.H A.H Y.L A.L Y.H A.L Y.L 
L L L H H L H H 
H H H L L H L L 

 

    
Piece of wire Voltage inverter Voltage inverter Piece of wire 

    

Figure 2–7. Realizations of the logical identity operation 

Contemplate the devices required to realize the four voltage tables that correspond to 
our four diagrams. When A.H yields Y.H, we need only a piece of wire, since the 
voltage does not change in passing through the identity box. Similarly, when A.L 
yields Y.L, we need only a piece of wire. On the other hand, the voltage table for A.H 
and Y.L specifies a voltage inverter. The voltage table for A.L and Y.H also specifies 
a voltage inverter. The triangle with a single circle on the input or output is the 
customary symbol for the voltage inverter. 

We have four ways of performing the identity operation, two of which require pieces 
of wire and two of which require a voltage-inverting device. The mixed logician may 
use any of the four, as required in the circuit. The obvious choice is to use minimal 
hardware, and in most instances the wire will suffice. However, if the design calls for 
a change in the voltage representation with no change in logic, then the mixed 
logician has convenient ways to change the voltage representation. The use of a real 
device—the physical voltage inverter—to accomplish the logical identity operation is 
an immediate consequence of mixed-logic theory. 

Now consider the logical AND operation, as developed in Figure 2–8. Two logic 
variables A and B are inputs to a box that must provide the logical AND of A and B 
as its output Y:  Y = A•B. When there are two inputs and one output, there are 23 = 8 
ways to select the voltage conventions. Eight voltage tables result from the eight 
assignments. Each voltage assignment produces its own mixed-logic diagram: the 
square box labeled "AND" shows the logic, and the circles show signals in which T = 
L. Since logical AND is of great importance to designers, we use the special AND 
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shape instead of the box labeled "AND." 

 
Figure 2–8. Eight implementations of  2-input logical AND’s, and their  
common names 

We may ask which of these eight realizations of logical AND correspond to readily 
synthesizable transistor circuits. While all of them can be implemented in Silicon, the 
NAND, NOR forms are by far the most common followed by the 2-input AND gate 
with T=H on both inputs and output and the 2-input OR gate with T=H everywhere. 
Mixed logic thus gives us four useful building blocks for realizing logical AND. The 
other four voltage tables in Figure 2–8 offer perfectly valid ways of performing 
logical AND, and some types of programmable gate arrays can implement them as 
primitives. None the less, for purely pedagogical reasons, we shall avoid using them 
in circuit diagrams meant for actual construction. (The two AND(1-c) devices are 
physically the same and just correspond to switching inputs; the same applies to the 
two NAND(1-c) devices). 

The positive-logic convention allows only one choice for logical AND. Similarly, the 
negative-logic convention allows only one choice. Mixed logic offers four. 

Now we have a slight problem: a mixed logician regards all of these devices as 
AND’s; but in our library of devices we need names that  imply their physical 
structure. The solution is simple: all AND.L devices will be named NANDs, with the 
number of input circles in parenthesis, simarily, all AND.H devices will be named 
ANDs, with the number of input circles in parenthesis. 

The number of transistors required to synthesize these ANDs in static CMOS 
technology is shown as the numerals 4 or 6 inside the logic symbol and is for 
reference purposes only—it should not appear on your circuit diagrams. 4-transistor 
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structures will have one gate delay, 6-transistor structures 2 gate delays. All are 
readily synthesized but 4-transistor devices would be chosen wherever possible to 
conserve Silicon area and minimize device delay. 

The logical OR operation gives analogous results. Figure 2–9 shows the treatment. 

 
Figure 2–9. Eight implementations of  2-input logical OR’s, and their common names 

 Again, we have eight ways of representing voltage at the inputs and output, and each 
choice transforms the truth table for logical OR into a voltage table. The same four 
integrated circuits that perform logical AND will also perform logical OR, but the 
voltages representing truth are different. 

The two OR(1-c) devices are physically the same and just correspond to switching 
inputs; the same applies to the two NOR(1-c) devices. 

We have the same naming problem as above: a mixed logician regards all of these 
devices as ORs; but in our library of devices we need names that  imply their physical 
structure. The solution is simple: all OR.H devices will be named ORs, with the 
number of input circles in parenthesis, simarily, all OR.L devices will be named 
NOR’s, with the number of input circles in parenthesis. 

The number of transistors required to synthesize these ORs in static CMOS 
technology is shown as the numerals 4 or 6 inside the logic symbol and is for 
reference purposes only—it should not appear on your circuit diagrams. 

4-transistor structures will have one gate delay, 6-transistor structures 2 gate delays. 
All are readily synthesized but 4-transistor devices would be chosen wherever 
possible to conserve Silicon area and minimize device delay. 
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Your target technology, or simulator, will determine which of these devices are 
available. If the 6-transistor structures are not available they can be readily 
synthesized by adding just one inverter to the standard NAND-NOR 4 transistor 
structures—which is the tack we will take in this book. Some programmable gate 
arrays can implement all flavors without additional hardware and should be used if 
available. 

Last, let's look at logic inversion. In Figure 2–10 the development is similar to 
that of the logical identity operator, but Y must equal NOT A. The truth table 
shows that for logical NOT the logical value of the variable must be inverted. 
There are four voltage realizations of this truth table: A.H and Y.H, A.H and Y.L, 
A.L and Y.H, and A.L and Y.L. Each gives rise to its own mixed-logic diagram, 
with the square box labeled "NOT" surrounded by appropriate circles to display 
the voltage representation of truth at the input and output. 

 
Logic 
A Y 
F T 
T F 

 
Four choices of voltage 

A.H Y.H A.H Y.L A.L Y.H A.L Y.L 
L H L L H H H L 
H L H H L L L H 

 
    

Voltage inverter Piece of wire Piece of wire Voltage inverter 

    
Figure 2–10. Realizations of the logical identity operation 

The four voltage tables correspond, respectively, to a voltage-inverting device, a 
piece of wire, a piece of wire, and a voltage inverting device. This is interesting: 
the mixed logician may implement logical NOT with a piece of wire! You can see 
what is required to achieve this design: the voltage representing truth is different 
at the two ends of the wire. 

The positive logician and the negative logician each have only one way to 
implement logical NOT—with a voltage inverter. The mixed logician potentially 
has four ways, two using a piece of hardware and two using just the wire 
connecting the input and output. 

We get the logical identity “for free” along a wire, as long as the voltage 
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representations are the same at each end of the wire. We get logical inversion “for 
free” along a wire if the voltage representations for truth are different at the two 
ends. Occasions arise when we wish to change the voltage representation of a 
signal without performing any logic or to perform logical NOT while maintaining 
the same voltage representation at the input and output. In digital design, we do 
not consciously perform logical identity operations; we assume that we have 
identity logic at any point in our circuit unless otherwise specified. On the other 
hand, we do indeed frequently perform logical NOT; it is one of our three 
important logical operators. Now we make an important choice: the mixed 
logician chooses to use the voltage inverter solely to generate the logical identity. 
This means that we will never insert a voltage inverter—a real device—into our 
circuit unless absolutely necessary. This choice also assures that the voltage 
inverter is never used for logical NOT. A corollary is that logical NOT is 
performed along a wire if and only if the voltages representing truth are different 
at the two ends. 

We already have useful symbols for AND and OR; these correspond to real 
devices in a circuit. Since we generate logical NOT without a real device, we 
need a notation to display logical inversion. In a diagram, logical NOT appears as 
a slash along the line. In a logic diagram, the slash is necessary to display the 
logic. In a circuit diagram that shows both voltage and logic, the slash is not 
strictly necessary, since we may infer logic inversion from the difference in 
voltage representations at the two ends of the wire. However, we always include 
the slash in mixed-logic circuit diagrams. Formally, the slash shows the point at 
which the voltage representation changes, and so one side of the slash should 
have a circle representing T = L. On either side of the slash we have our usual 
identity operation: logical inversion occurs at the slash: 

 
 

 
The exact point along the wire at which we put the slash is arbitrary; the designer 
chooses a convenient place. 

When we need the same voltage representation for the input signal and its 
inverted output, we may insert a voltage inverter to the left or to the right of the 
slash: 

 
or 

 

 
or 

 
In practice, we usually omit the T = L circle on the logic-inversion slash, since it 
conveys no information that cannot be gained by following the wires from the 
slash to the ends. In this book, we will use the slash without the circle except, in a 
few cases, for emphasis. 

Once again, note carefully that the voltage-inverting device performs no change in 
logic; the same logic variable is implemented on both sides of the voltage inverter, 
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but with different voltage polarities. The device inverts voltage, not logic. To avoid 
using the term “inverter,” which smacks of logic inversion, we sometimes refer to the 
voltage inverter as the “oops” function, implying that we are satisfied with our logic 
variable, but, “oops,” we need to switch voltage levels. 

Let’s implement Z = X•Y, making input X available as signal X.L (i.e., T = L), and Y 
available with T = H. 

Two implementation are shown in Figure 2–11, the first one assumes the availability 
of the AND(1-inv) function, which we would prefer if available. However, this gate is 
unlikely to be available as a primitive except in some programmable gate arrays. The 
other uses standard NAND-NOR gates along with a voltage inverter. 

 Figure 2–11. 

Two implementations of Z = X•Y 

 
We inserted a voltage inverter to change signal Y.H into Y.L, the input required for 
our AND gate. You will find that adding voltage inverters where necessary requires 
no active thought; the little mixed-logic voltage-polarity circles direct you to do the 
right thing. 

This is the entire mixed-logic theory. We have laid a firm foundation for achieving 
our original circuit-design goals. We have tools to realize logical AND, OR, and 
NOT. We have notations that show the voltage representing truth at every point in the 
circuit and that show each physical device. We are able to keep a strict separation of 
logic and voltage in our diagram—all the logic is there and all the voltage behavior is 
there. These mixed-logic notations and theory can be applied immediately to more 
complex digital building blocks. As we now turn to the analysis and synthesis of 
mixed-logic circuits, you will see that the mixed-logic methods allow the creation of a 
circuit from the original logic equation (synthesis) as well as the recovery of the 
original logic equation from the circuit (analysis), an advantage shared by no other 
method. 

BUILDING AND READING MIXED-LOGIC CIRCUITS 

Analyzing Mixed Logic Circuits 
In setting the goals of our circuit design methods, we said that a good circuit diagram 
should present the logic in a way that allows the reader to retrieve the designer's 
original expression. Mixed logic fulfills this condition; analyzing a mixed-logic 
circuit is simple. Here is the prescription: ignore circles and inverters (since they 
perform no logic in themselves), interpret the slash as logical NOT and the AND and 
OR symbols as logical AND and OR, and read the original logic equation from the 
diagram. For instance, read the circuit in Figure 2–12 to recover the logic equation 
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! 

Y = A •B + (C+ D)  

Figure 2–12. Implementation of    

! 

Y = A •B + (C+ D)  

In words, the thought process is:  

Y equals (A AND (B-NOT))   OR   ((C OR D)-NOT) 

If you feel the need for additional information on the diagram, insert the intermediate 
signal names and the missing circles on the slashes. You will quickly develop the skill 
to read a mixed-logic circuit without these extra legends. 

Synthesizing Mixed-Logic Circuits 
To implement a given logic equation, begin by sketching a picture of the equation, 
using the AND and OR logic symbols, and using the slash for logical NOT. Label the 
inputs and outputs with appropriate names of logic variables. At this point, the 
emphasis is on the logic, and it is this initial logic framework that allows us to analyze 
completed circuits with relative ease. Next, if the input or output variables have fixed 
voltage representations, add the appropriate .H, or .L and its companion circle. This 
step converts some of the logic variables into signals and fixes the voltage 
representation on some of the lines. You may assume that logic variables without a 
stated representation are available in either signal form, and you may use this 
flexibility in synthesizing the circuit. Usually, the devices available for implementing 
the AND and OR operations will be restricted. The tighter the restrictions, the easier 
the synthesis. For instance, if you are given only NAND and INVERTER gates, the 
synthesis is straightforward however complex the equations. There is no flexibility, 
since the only symbols available are: 

 
With a wide choice of building blocks, we have more flexibility, and therefore more 
decisions. We wish to optimize the circuit. An obvious criterion for optimization is to 
minimize the number of voltage inverters, but other factors are often relevant. When a 
variety of gates is available, the designer may display virtuosity in developing a 
satisfying implementation of the original equation. 

Producing a valid circuit design is easy; producing an aesthetic design is an art. 
Nevertheless, the general process is straightforward. Select a likely gate, insert the 
corresponding mixed-logic symbol by adding required circles to the logic symbol, add 
voltage inverters where needed to make the circles in the design conform to the 
requirements of the logic, and then move to a neighboring element. As the synthesis 
proceeds, you may notice that a different choice of gate in a previous step results in 
fewer inverters. Within reason, you would probably wish to backtrack and introduce 
the change. In a short time, the circuit will converge to an acceptable solution. 

AND and OR functions of more than two variables can be handled either with multi-
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input gates or with gates with fewer inputs. For instance, either of the forms in Figure 
2–13 describes a three-variable AND function. Design considerations dictate the 
choice and are technology dependent; in static CMOS, device physics limits inputs to 
3 or 4—most progammable gate arays allow wider inputs. The original logic is not 
affected but the number of serial stages impacts circuit delay.  

 
 

 
Figure 2–13. Realizing a 3-input AND with 2-input gates 

Mixed-logic style. Experience in synthesizing mixed-logic circuits leads to concern 
about several points of style. We present a few points here and you will discover 
others as your mixed-logic skills grow. 

Our habit of dropping the circle adjacent to the / operator is a matter of convention; 
you are free to accept or reject this convention. The slash is itself a convention, since 
we may infer the existence of logical NOT from a diagram of a voltage circuit 
without the slash. Nevertheless, we strongly recommend that you use the slash to 
indicate logical NOT; it adds greatly to the clarity of the diagram. 

In dealing with voltage inverters and voltage polarities in mixed-logic syntheses, 
opportunities for decisions occur. Consider a design for K = A + B, with input signals 
A.L and B. H. Any implementation with readily available gates will have an inverter 
on one input. Figure 2–14 shows two designs. Which is better? The designer who will 
need signal K.H later would probably choose Figure 2–14b. In other situations, Figure 
2–14a would be appropriate. 

 
 

 
(a)  (b) 

Figure 2–14. Two circuits for K=A+B with signals A.L and B.H 

The next illustration is more clear-cut. To realize 

! 

K = A+B , again with inputs A.L 
and B.H, a good circuit is (a) 

 

 

  
(a) (b) 

Figure 2-15 

The circuit has no inverters. Designs using more gates are inferior, even if they 
perform the same logic; for example, the (b) circuit has two inverters. Even if we 
desire G.L as the output in preference to G.H, the second circuit is still bad, since for 
any voltage signal we are always only one inverter away from its other voltage 
counterpart: we could produce G.L from the first circuit by adding an inverter to the 
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output. 

Be wary of subtly changing the logic with your drafting notations. Figure 2–16 shows 
three partial circuits, each an implementation of the equations 

! 

M = J•X  and N = G + 
X. These circuits have identical wires and gates, and therefore must perform 
equivalent logic. But remember the guideline for digital drafting: the circuit must 
display the original logic. Only Figure 2–16a is a proper implementation of the 
original logic equations. It is unlikely that the double logic inversion of X in Figs. 2–
16b and 2–16c would have survived earlier simplifications of the logic. We would not 
expect to see such a form presented for construction. 

 

(a) Good:    
  

! 

M = J • X
N = G + X

 

 

(b) Poor:   
  

! 

M = J • X

N = G + X
 

 

(c) Poor:     
  

! 

M = J • X

N = G + X
 

Figure 2–16.  
A good circuit and two poor ones for 

! 

M = J•X  and    

! 

N = G+ X 

We have found the following rule to be helpful in drafting logical NOT in complex 
logic circuits: Place the slash as far to the right as practical on its signal line. 

Frequently, an input to a device will always be fixed at F or at T. This often occurs 
with the complex circuits described in Chapters 3 and 4, where you may wish never to 
enable a certain device feature, or always to enable it. Suppose that we wish to say 
"never do it"—we wish to make a signal permanently FALSE. Here are two mixed-
logic representations for the F operation: 

 

 

 
In this unchanging operation, the voltage on the wire never varies. For convenience, 
we sometimes show only the voltage level (H or L) on the diagram: 

Other Mixed-Logic Notations 

The presence or absence of the little circle in mixed logic shows the voltage polarity 
at each node in the diagram. Another popular mixed-logic notation for circuit 
diagrams is a small triangle to show the polarity of the voltage. A triangle lying above 
the line means T = H at that point; a triangle below the line means T = L. Figure 2–17 
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illustrates this notation. 

 

Equivalent to 

 
(a) Inputs 

 

Equivalent to 

 
(b) outputs 

Figure 2–17. An alternative mixed logic notation 

MIXED LOGIC FOR OTHER LOGIC FUNCTIONS: EXCLUSIVE OR and 
COINCIDENCE 
We have stressed AND, OR, and NOT as natural logic elements for designers. Are 
there other Boolean functions of two variables that are used intuitively in designs? 
Two more functions are of sufficient value to be included in our set of simple logic 
building blocks. These correspond to our concepts of "different" and "same." The 
EXCLUSIVE OR (XOR) logic function is true only if its two inputs have different 
logical values; one input is true while the other is false. The COINCIDENCE 
(XNOR) function is true only when both of its inputs are the same—both true or both 
false. Logic operator notations and drafting symbols for these logic operations are: 

 Logic 
Symbol 

Drafting Symbol 

EXCLUSIVE OR 
(XOR) 

⊕ 
 

COINCIDENCE   
(XNOR) 

! 

" 
 

 

These operators have the following truth tables: 

Logic 
A B 

! 

A"B 

! 

A"B  
F F F T 
F T T F 
T F T F 
T T F T 

Observe that 

! 

"  is the inverse of . The methods used in Chapter 1 yield Boolean 
equations for these functions in terms of the familiar AND, OR, and NOT operators: 
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! 

A"B = A•B+ A•B 

! 

A" B = A•B+ A•B  

These are well-known and useful expansions of XOR and XNOR. Memorize them. In 
the evaluation hierarchy for logical operators, they fall below NOT and above AND. 

The transistor circuits for XOR and XNOR are similar. If one of them is in your 
library of primitives, the other will likely be there also. If you are using a simulator to 
draft circuit diagrams these logic elements will almost certainly be in the library of 
primitives. 

The XOR’s voltage table is: 
Inputs Output 

L L L 
L H H 
H L H 
H H L 

Our usual method of comparing a logic truth table with a device's voltage table 
produces an amazing result: the XOR voltage table yields four mixed-logic 
realizations for the EXCLUSIVE OR logic function! The drafting symbols are: 

 

You should verify that substituting the indicated voltage values for the T and F in the 
truth table will in each case give a voltage table that is equivalent to that of the XOR. 

This is not all—the XOR voltage table also gives four representations of the logical 
COINCIDENCE operator. Here are the symbols: 

 

The reader should go through the same exercise with the XNOR voltage table and 
derive the equivalent logic drafting symbols 

Notice the pattern: the XOR symbols have an even number of circles, whereas the 
XNOR symbols have an odd number of circles. This marvelous XOR gate gives eight 
building blocks for our drafting kit. We may use any of the four XOR symbols, 
depending on the requirements for our particular circuit, and still perform XOR logic. 
For instance, Figure 2–18 is a drawing of two syntheses of a logic equation involving 
XOR. With mixed logic, these designs arise naturally, with no mental effort wasted 
on logic-voltage interrelations. 

  
Figure 2–18. 
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Such elegant and useful results send a thrill of joy through the mixed logician. These 
eight easily remembered symbols allow us to produce XOR and XNOR in a simple, 
efficient manner. If your library also includes a device with the XNOR voltage table 
your tool kit will be further enhanced by another 8 drafting symbols; together these 16 
symbols will serve as a basis for construcing almost any conceivale circuit involving 
the XOR, XNOR logical operators. 

Output “Fights” – and Their Avoidance 
Sometimes we wish to share a wire between several components, memory modules 
sharing a set of output data wires (the memory bus) for example. If one memory 
module is trying to drive a shared wire H, and another module trying to drive it L, we 
have an output “fight”. Unpleasant things happen, things get hot, output transistors 
may burn up, and at the very least the wire will have some indeterminant voltage 
between H and L which will confuse downstream logic. Clearly this must be avoided 
at all costs. 

Consider the abstraction in Figure 2–19 where we have 4 different memory modules 
(often called memory banks) sharing  common wires: We need some way to take 3 
modules “off line” leaving only one to drive the common wires at a time. Here we 
model the “off line” mechanism as a simple mechanical switch for illustrative 
purposes—electronic analogs are readily synthesized and are called Tri-State buffers 
or Tri-State switches. Tri, in this context means either H, L, or “not there” 

 
Figure 2–19. Memory modules sharing a common data bus 

(The small solid dots on the data bus in Figure 2–28 is the standard notation for wires 
connected together). 

Static CMOS uses P-MOSFET transistors to drive outputs H, and N-MOSFETs to 
drive outputs L. These transistors are called complements of each other, and CMOS 
logic (Complimentary MOS) always has one or the other type “on” to provide solid 
output drive to either H or L. If we could devise some way to have neither type “on” 
then the output would be undriven, or “floating” just what we need in a tri-state 
driver.  

Careful here—who knows which switch should be turned on? For a CPU 
communicating with memory, it is obvious the CPU knows which memory bank it 
needs to access, and so the CPU must communicate to the memory subsystem which 
bank to turn on. This generalizes; whenever a receiver communicates with a tri-state 
generator of data, it is incumbent on the receiver to provide correct information to the 
generator to enable the proper tri-state switch. Further, it had better not turn on more 
than one, or a fight will ensue. 
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Tri-state switches or buffers are widely used in digital systems, and with the caveat 
that no more than one source can drive a wire at the same time, is a robust way of 
sharing wires, and wires are often in short supply in real hardware. The term buffer 
connotes a normal device, but with more robust drive capability to overcome the 
inevitable slowdown that occurs when driving peripheral wires.  

The drafting symbols for individual tri-state buffers look like the standard inverter 
symbol, with the addition of a circle on the symbol’s side showing the active voltage 
to turn on the tri-state switch. These are called “tri-state enables” and are almost 
always low active signals. Tri-state buffers come in both inverting and non-inverting 
styles. Figure 2–20 is a concrete example of 4 different 1-bit variables sharing a 
common wire which feeds down stream logic by means of non-inverting tri-state 
buffers. 

 
Figure 2–20. 

What happens when none of the tri-state switches is turned on? You must avoid this 
at all costs since the wire is then “floating” and has an indeterminant voltage which 
will likely cause faulty behavior in the receiver. In chapter 3 we will discuss decoding 
circuits which will always avoid this problem. 

Figure 2–20 shows what you must do to transform ordinary signals into the tri-state 
signals that can share a wire. Many complex logic elements, like memories, 
incorporate tri-state buffers as part of their internal structure. Such devices would be 
labeled “tri-state enabled”, and would incorporate the tri-state enable circle as part of 
the device symbol. 

At first glance you might try to map the circuit of Figure 2–20 into this boolean 
equation: 

! 

  

! 

WIRE = B •EnB + XYZ •EnXYZ + PDQ •EnPDQ + A •EnA  

but this interpretation would be wrong since the logical OR admits any, or all, of its 
terms to be simultaneously true whereas tri-state sharing demands only one be active 
at a time. The protocol is thus more akin to a high level CASE or SELECT construct. 

When the Receiver Doesn’t Know who is Sending Signals on a Shared 
Wire, (The Open-Drain Protocol) 
Non-sense you say? It is really quite common when peripheral circuits share a wire 
feeding a signal to a CPU.  If the peripherals are independent, it is possible for both of 
them to try simultaneous transmission. Imagine something like a mouse and track-ball 
driving a signal to a CPU. One would expect the user to be using one or the other, but 
not both; but what’s to prevent someone from trying? The CPU has no control over 
the user and must protect against inadvertent, stupid, or malicious users. How to avoid 
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a fight? 

For two devices, A, B, whose outputs are wired together there are 4 possible results: 
A B Wire = 
L L L 
L H fight 
H L fight 
H H H 

If we could modify the output transistors to only drive outputs L, but never drive 
outputs H, we could always avoid a fight! We could then wire outputs together with 
impunity! All we need to do is figure out some independent way to provide a default 
H on the wire, independent of the devices trying to drive the line, but, a H that can be 
overpowered by any device driving the line L. A simple “pull-up” resistor does this 
nicely. Here, the resistor will “pull-up” the output to H for the default case when 
neither swich is overpowering it to L. 

Here is a discrete switch model of the protocol; in this case the voltage truth table 
would be: 

 A B Y 

 

L L L, (both A&B are 
overpowering the resistor’s H) 

 

L no 
drive 

L, (A is overpowering the 
resistor’s H) 

 

No 
drive L L, (B is overpowering the 

resistor’s H) 

 

No 
drive 

No 
drive 

H, (default provided by resistor 
tied to H) 

Figure 2–21. Modeling open-drain voltage table 

Transistor analogs of the mechanical switches in figure 2-21 are readily constructed 
and are commonly called “open collector” devices. “open collector” is a holdover 
from the days of bipolar transistors; with the advent of CMOS a more appropriate 
name would be “open drain” and we will henceforth use that terminology. 

As opposed to modules with built in tri-state buffers, like memories, open drain 
buffers are usually separate entities inserted between standard gates driving a shared 
output wire. 

In your first exposure to hardware implementations, you need not delve into the 
details of open drain logic beyond knowing that a protocol exists for separate devices 
sharing a wire without output fights. If you blossom into a designer of real hardware 
devices you will want to re-visit this topic since it is the only way to solve a very 
common problem of disparate devices sharing a common resource. 
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Open-Drain Logic (Optional)  
This section requires an elemenary understanding of CMOS logic and OHM’s law  

N-MOS transistors provide solid output drive to L and complimentary P-MOS 
transistors provide solid drive to H. In traditional static CMOS logic both types of 
transistors are present and provide solid drive to H or L. 

Open-drain buffers have output drive circuits that are the exact electrical analog of the 
switches in fig. 2-21. The P transistors are simply not there—N transistors provide a 
solid drive to L, but if they are off the output is undriven, or “floating”. the only 
difference between an open-drain buffer and a normal CMOS inverter is a larger N-
FET to provide robust L drive and the absence of the P-transistor. 

The resulting devices will be identified as open-drain, (open-collector),  buffers in 
your device library and may be identified by the addition of a line on the output 
terminal. (Unfortunately the notation has not been standardized—we will use the line 
notation as in fig. 2-22).  

 = 

 

Figure 2–22. Drafting symbol for an open-drain buffer 

Lets contrast Figure 2–20 with a superficially similar circuit using open-drain logic: 

 
Figure 2–23. A circuit using open-drain logic 

Several things: 
(1) The receiver no longer has control of who’s online; A, B, XYZ, PDQ are 

always online (if their inputs are true). 
(2) Y is the OR of signals A, B, XYZ, PDQ.      

! 

Y = B + XYZ + PDQ+ A  
(3) The OR happens just by wiring the outputs together, we call this a “Wired 

OR” 

For the wired OR to work, all open drain drivers must drive the common wire to a 
level opposite to the default H generted by the resistor. Open drain buffers use NFET 
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transistors, like the one shown in bold in figure 2-22, to perform this function “by 
pulling the common line L” 

The resistor should be considered part of the receiver since it must be able to handle 
the case when external circuits are unplugged, in which case Y must revert to its 
default F value. 

 
Figure 2–24. Disconnected open-drain logic  

We would expect duality to rule when we change all inputs to T.L and in this case we 
have a “Wired AND”. We leave this as grist for your mental mill. 

The concept of a wired OR & AND has a non obvious virtue, it spatially separates the 
individual elements and distributes them along a wire. Spatial distribution is a 
requirement for efficient implementations of memory structures and we will revisit 
these concepts when we study memory circuits in the next chapter. 

THE POSITIVE-LOGIC CONVENTION (OPTIONAL, and largely of historical 
interest) 
If you are designing a circuit using schematic entry—the technique espoused in the 
chapter, mixed logic will be the method of choice. If you are using a modern high 
level design language, mixed logic optimizations will be implemented as a matter of 
course, “behind the scene”. All this means that you are unlikely to encounter a 
positive logic circuit, but occasionally you may have to deal with one. Only in that 
case should you burden yourself with the material in this section. 

The positive-logic convention has been widely used in the past in engineering 
practice. The convention is easy to learn, but this ease of learning is deceptive, 
because designing real circuits with positive logic requires clumsy, constricting rules 
and transformations. 

When the positive-logic convention is used, logical TRUE is represented everywhere 
by a high voltage, and FALSE is represented by a low voltage. Under these 
conditions, the voltage table for what we have called a NOR gate can be transformed 
into the truth table for the logical NOR function: 
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Voltage  Positive Logic 
A B Y  A B Y 
L L H  F F T 
L H L ⇔ F T F 
H L L  T F F 
H H L  T T F 

Surprise? I should think not, that’s why we called it a NOR gate! Similarly, the 
voltage tables for NAND, AND, and OR gate’s are obtained by assigning T=H for all 
entries in the logical truth tables NAND, AND, and OR, respectively. That's why we 
gave them these names. 

Simarily, in positive logic, the voltage inverter always provides a logical inversion, 

An application of De Morgan's law shows that the NAND function may be 
transformed into the inverted-input OR function: 

  

! 

A NANDB = A •B = A + B  

Similar transformations of NOR, AND, and OR produce inverted-input AND, 
inverted-input NOR, and inverted-input NAND logic functions, respectively. 

In positive logic, since logic and voltage are tightly bound together, picking a 
physical gate is equivalent to picking a particular logic function. NAND and NOR 
gates arise naturally in most transistor-based technologies; fabricating AND and OR 
gates requires the insertion of voltage inverters. The positive logician, in dealing with 
NAND and NOR gates, implements NAND and NOR logic or their De Morgan 
counterparts. 

In the customary notation for circuits based on positive logic, a small circle represents 
the logical inversion operation. Figure 2–25 shows positive-logic interpretations of 
some common gates. 

    
NAND Inverted-input OR Inverted-input AND NOR 

    
AND Inverted-input NOR Inverted-input NAND OR 

Figure 2–25. Interpretation of gates in the positive-logic convention 

 (The names lead directly to both logic and voltage truth tables in positive logic; in 
mixed logic we use these same names to signify voltage truth tables but treat the 
symbols as pure AND’s and OR’s, the circles defining what truth means for each 
symbol). 

To realize a logic equation, the positive-logic designer must transform the logic, 
either algebraically or graphically, into a form that corresponds to the chosen gates; in 
the process, the flavor of the original logic equation vanishes. An algebraic approach 
involves repeated applications of De Morgan's law to recast the original logic 
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expression into one using the positive logic supported by the chosen gates. Consider 
the following equation, to be rewritten so as to accommodate two-input NAND, NOR 
gates:      

! 

Y = A + B •C •D  

We must transform this equation into one involving only NAND, NOR, or NOT  
operators by a sequence of tedious steps. Here is one such sequence: 

! 

Y= A+B•C•D  

! 

Y= A+B•C•D  

! 

Y= A+B•(C+D) Y= A+B•X where X = CNOR D  

! 

Y= A+B•X  

! 

Y= A+ (B+ X) Y= A+ Z where Z = BNOR X  

! 

Y= A+ Z  

! 

Y= A•Z Y= A NAND Z  

 
Figure 2–26. Positive logic implementation (??) of      

! 

Y = A + B •C •D ,  using 
DeMorgans law and  2-input NAND, NOR and NOT gates 

Elegant? Hardly! Correct? Actually no; but we leave it as an exercise to uncover the 
flaw, which could either be in the sequence of logic transformations or in the mapping 
from equations to hardware. 

To be fair, the plethora of inverters is partly due to restricting our library to 
2-input NAND, NOR gates. So lets try a different set of transformations: 

! 

Y= A+B•C•D  Eq. 2–1 

! 

Y = A + B• C• D 
Eq. 2–2 

! 

Y= A•(B•C•D) Eq. 2–3 

 
 

 
Figure 2–27. Positive logic implementation of      

! 

Y = A + B •C •D ,  
using DeMorgans law and  multiple-input  NAND, NOR and NOT gates 
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Certainly a much better design, but still removed from the original equation. In fact it 
is not clear, from the logic diagram alone, which equation it does implement; 
probably 2–1 and not 2–2 or 2–3, but we have no way of knowing this. 

Contrast this with a mixed-logic implementation of eq. 2–1. We start with a pure logic 
implementation of equation 2–1. Here we have no freedom; the placement of the 
logical symbols for AND, OR, NOT simply mirrors the heirarchy rules for those 
mathematical constructs.  

 
Figure 2–28. 

To move from the logic realm to hardware we must specify what hardware library we 
wish to use. If restricted to NAND, NOT devices, Figure 2–20 immediately, and 
irrevocally, transforms to Figure 2–29 and from the diagram we can immediately 
infer the parent logic equation, and the equation immediately leads to the hardware. 

This one-to-one correspondence is one of the beauties of mixed logic. 

 
Figure 2–29. A mixed logic implementation of   

! 

Y = A + B •C •D  

Digital-design textbooks in which positive-logic techniques are used contain 
prescriptions for drafting circuit diagrams using NAND and NOR gates without 
performing the algebraic transformations. There are separate sets of rules for using 
NAND gates alone, NOR gates alone, and certain combinations of NAND, NOR, 
AND, and OR gates. The prescriptions require starting with a sum-of-products or 
product-of-sums logic expression, thereby forcing upon the designer a particular form 
of logic expression solely to achieve a hardware circuit. 

We will illustrate circuits based on positive logic using the simplest set of rules-those 
for pure NAND-gate synthesis of two-level circuits. (The term level refers to the 
maximum number of gates encountered from an input to the output.) It is assumed 
that multiple-input NAND gates are available. The rules are: 

(1) Simplify the function as a sum of products. 
(2) Draw a NAND gate for each product that has at least two variables. The 

variables form the inputs to the NAND gate. These NAND gates are the first 
level of gates. 

(3) Draw a single NAND gate, using either the NAND or inverted-input OR 
graphic symbol at the second level. The inputs come from the firstlevel 
outputs. 

(4) For a product consisting of a single variable, insert an inverter at the first 
level; alternatively, use the complement of the variable as an input to the 
second-level NAND gate. 
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Applying these rules to the preceding example produces the two-level result shown in 
Figure 2–27. Rules for other two-level syntheses are more complex in application. 
Positive-logic textbooks do not contain rules for building a circuit for a general multi-
level logic expression using arbitrary choices of gates—the rules would be too 
cumbersome. 

To the mixed logician, these techniques are obnoxious and unnecessary. With mixed 
logic, we can readily develop a circuit for any logic equation, of any complexity, 
using any desired gates, while preserving the original structure of the logic equation. 
In mixed logic, there are no special cases for different types of gates. 

In subsequent chapters, where we encounter complex integrated circuits with various 
true-high and true-low inputs and outputs, the benefits of the mixed-logic notation are 
even more pronounced. 

Reading Positive-Logic Circuit Diagrams 
The mixed-logic concept of performing a logic operation (NOT) without a physical 
device, and the related concept of a physical device (the inverter) that performs no 
logic, evolve directly from our insistence that the original logic be visible in the 
circuit diagram. In the positive-logic and negative-logic conventions, where logic and 
voltage are rigidly tied together, the inverter performs logic inversion. We sometimes 
wish to extract a logic equation from a fixed-convention circuit. As we have shown, it 
is not possible to recover the original logic; the circuit shows only a transformed 
version of the original. Can a mixed logician read a positive logic circuit? Certainly; 
there are several approaches. One method is to read the positive-logic diagram 
directly, interpreting NAND gates as logical NAND (NOT AND), NOR gates as 
logical NOR (NOT OR), inverters as logical NOT, and so on. Then write a logic 
equation from the circuit. Using this approach, we write A NAND B as   

! 

A •B , and A 
NOR B becomes   

! 

A + B . If you are unhappy with the number of logic inversions in 
the result, then apply De Morgan's law to try to eliminate some of them. Similar 
approaches allow us to read negative-logic diagrams. 

As an example, consider Figure 2–30, a positive-logic-convention circuit. Following 
the prescription, we have 

! 

K = A•B•(B+C) 

 

! 

K = (A+B)•(B•C)  

! 

K = (A+B)+ (B•C) 

! 

K = A•B+B•C 
Figure 2–30. A circuit in the positive-logic convention. The circles represent logic 
inversions. 

When do we stop manipulating the expressions for K? From the circuit in Figure 2–
30, we don't know. All the above Boolean algebraic forms of K are legitimate, but we 
have no way to tell what the designer originally had in mind. We can be fairly sure it 
was not the first. 
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This method of reading positive-logic-convention diagrams produces a Boolean 
equation from the unmodified circuit diagram and transforms the equation into a more 
tractable form. Another method is to transform the positive-logic-convention circuit 
diagram into mixed logic, from which we read off an equation. This is a graphical 
method, whereas the first method is algebraic. For the graphical method, take the 
following steps. First, append .H to the positive logic inputs and outputs. If you wish, 
replace a negated input or output by the non-negated mixed-logic form. For example, 
an input 

! 

G becomes a mixed logic 

! 

G.H , and you may express this as G.L with a 
circle on the input line. Next, wherever the circles do not match at the ends of a line, 
insert a slash to emphasize the implied logical NOT. Where a gate is surrounded by 
slashes, you may simplify the solution by altering the AND or OR gate symbol to its 
mixed-logic OR or AND counterpart. This is an application of De Morgan's law, and 
on the diagram the result is an inversion of circles and a change of the logic symbol to 
its dual. The circle inversions require rectification of the slashes on the gate input and 
output lines, leading to a simpler circuit. The process is shown in Figure 2–31. After 
this conversion to a mixed-logic circuit, reading the logic is simple. 

 
⇔ 

 

 
⇔ 

 

 
⇔ 

 
Figure 2–31. Some logic transformations on gates 

In Figure 2–32 we depict a conversion of the previous example to mixed logic. The 
result is the same as the last equation in Figure 2–30. Again, we cannot be sure if this 
is the designer's original equation, since Figure 2–32 does not preserve the original 
equation. 

 

(a) Step 1 

 

(b) Step 2 

Figure 2–32. Converting Fig 2–30 to mixed logic 

We might investigate how a mixed logician would handle the original synthesis 
problem: 

! 

K = A•B+B•C. In a mixed-logic synthesis for this equation, one choice 
for inputs is A.H, B.H, and C.L, in accordance with Figure 2–32, and we might 
assume that the form of output K is unspecified. Figure 2–33 shows the resulting 
mixed-logic circuit. Because we permit K to appear in either signal form, Figure 2–33 
contains one less inverter than Figure 2–30. Whether this ends up saving a gate will 
be determined by the needs of the larger design. We may require only signal K.H 
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later, and thus the saved inverter would reappear to convert K.L to K.H. However, the 
mixed logician is not preoccupied with voltages; the drafting conventions handle 
voltages automatically. The mixed-logic method creates the opportunity for saving 
gates. 

 
Figure 2–33. A mixed-logic circuit for   

! 

K = A •B + B •C  

In our experience, for a given logic expression, mixed logic always produces a result 
that is at least as economical of hardware as other systems. Mixed-logic circuits often 
save hardware while preserving the original logic in the diagram. 

We close the discussion of other drafting conventions with a warning. In some parts 
of the electrical engineering community, "logic 1" and "logic 0" don’t refer to logic at 
all, instead they refer to a high-voltage level and a low-voltage level, respectively. 
This is an old use of the word logic, originating in the early days of digital circuits to 
distinguish a voltage level (a range of voltage) from an exact value of voltage. The 
terminology illustrates the confusion that arises when logic values and voltage levels 
are not kept as separate concepts. This jargon is giving way to more modern concepts 
of separate logic and voltage, but you will sometimes encounter the old usage, so be 
alert when you deal with existing documentation and when you talk with other 
hardware designers. 
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logic. 
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EXERCISES 
(A simulator, such as Logic Works, with circuit drafting software will be a helpful 
adjunct in working these problems) 

2-1. Write the voltage tables for the following devices: 

 
2-2. What is positive logic? Negative logic? What is the positive-logic 

convention? The negative-logic convention? The mixed-logic convention? 

2-3. Explain carefully the meaning of these mixed-logic notations: 
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LOADH 
LOADH. H 
LOADH. L 

2-4. What is the difference in logic performed by the signals XYZ.H and XYZ.L? 

2-5. True or false: The H notation means that the voltage used to represent a 
given logic variable is high. 

2-6. Give the dual of each of these mixed-logic symbols: 

 
2-7. Why do we wish to maintain a strict separation of the concepts of logic and 

voltage? 

2-8. How does a mixed logician denote logical NOT? What device is used? 

2-9. Fill in all intermediate signal names on this mixed-logic circuit diagram: 

 
2-10. What logic does each of these circuit elements perform? 

 
2-11. Explain the difference between synthesis and analysis. 

2-12. State the prescription for analyzing mixed-logic circuits. 

2-13. Analyze these circuits to produce the equations for the outputs: 

  
(a) (b) 

 
 

(c) (d) 
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2-14. Synthesize the following equations using only NAND, NOR or INVERTER 
gates. The inputs are generated elsewhere as A.L, B.H, C.L, D.L, and E.H. 
The desired voltage representations for truth on the output is given for each 
equation. 

(a)   

! 

Y = A •B + C •D   Y.H 

(b)   

! 

Y = (A + D) •(B + E)  Y.L 

(c)   

! 

Y = A + C + B + E   Y.L 

(d)   

! 

Y = A •B •C + B •E  Y.H 

(e)   

! 

Y = A •D    Y.L 

2-15. Synthesize equations (a…e) using any gate in the Logic Works simulation 
gate library (or their DeMorgan equivalents). If the DeMorgan symbol is not 
in the Logic Works simulation gate library, make the equivalent symbol and 
use it in your schematic. The input polatities are as given in 2–14. Let the 
output signal convention for each circuit be the natural one arising from your 
synthesis. 

(a)   

! 

Y = B •C •D + E •B• A  

(b)   

! 

Y = B •C •D + E •B 

(c)   

! 

Y = (A + B+ C) •(D + E)  

(d)   

! 

Y = (A + B+ C) •D  

(e)   

! 

Y = A + B + C + D + E  

For problems f and g, use any gate in the Logic Works simulation gate 
library (or their DeMorgan equivalents) except the Logic Works XNOR. 
You may have to use one of the 8 mixed logic equivalent forms of the XOR 
logic given in the text. If so, make corresponding symbols and use them. 

(f)   

! 

Y = (A •B+ C) •(D"E)  

(g) 

! 

Y= (A•B+C)•(D " E) 

2-18. Consider the function X of Exercise 1-33. X is true only when two 2-bit 
binary numbers A1,A0 and B1,B0 are different 

(a) Working directly from the definition of X, write a logic equation for 
X making use of the XOR operator. 

(b) Working directly from the definition of X, write a logic equation for 

  

! 

X making use of the COINCIDENCE operator. 

(c) Show how you may use DeMorgan’s law to transform the expression 
for X in part (a) into the expression for   

! 

X  in part (b) 

(d) Show the equivalence of your results for parts a) and (b) to the results 
of exercise 1-33 
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2-19. Derive a logic expression that is true if one positive 5-bit number A is less 
than another similar number B. 

2-20. Many cars have an alarm buzzer that warns of unfastened seat belts, lights 
left on, and the key left in the ignition. The system might operate as follows: 
The alarm should sound if the driver's seat belt is not fastened when the 
motor is running, or if the passenger seat is occupied and the passenger's seat 
belt is not fastened when the motor is running, or if the lights are on when 
the key is not in the ignition switch, or if the key is in the ignition switch 
when the motor is not running and the driver's door is open. Assign a 
meaningful name to each variable in the statement, and write a logic 
equation for the alarm buzzer's control signal. You may find it useful to 
break the statement of the buzzer's behavior into several statements and 
combine these statements to produce your final result. 

2-21. You are to design a 5-input circuit, 4 inputs of which form the binary 
representation of a decimal digit (in other words, the BCD code A,B,C,D 
for a digit 0 through 9). The fifth line is a control signal CL. If the control 
signal is false, the single output of the circuit should be true only if the 
decimal input number is 4 or greater. If CL is true, the output should be the 
inverse of input bit B. You should be able to write an equation for the output 
without writing the large (32-row) truth table. Express the equation in a 
circuit, using gates of your choice. 

2-22. Here is a circuit with the positive-logic convention 

 
(a) Write a logic equation directly from the diagram 

(b) Convert the diagram to mixed-logic notation. 

(c) Analyze the mixed-logic diagram, and show the equivalence of the 
result with that obtained in part (a). Design a circuit embodying OUT 
= A•B•C + D + E, using only the open-drain inverter. You may 
choose the voltage representations of truth at the inputs and outputs. 

2-23. At one time, designers developed a complete logic family of inverters, AND 
and OR gates, and so on, based on fluid flow. These devices were proposed 
to immunize military devices from nuclear radiation. It was also suggested 
that fluid-flow devices might drive mechanical devices such as printers and 
card readers directly with fluid logic, bypassing the expensive conversion of 
electronic digital signals to mechanical control signals. The scheme is now 
only of historical interest, but it is interesting to contemplate how this class 
of devices might fit in with modern design methods. Suppose you are given a 
family of fluid flow devices and are asked to build a digital system using 
them. 
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(a) What definition of fluid flow (either at rest or moving) would you 
choose to represent logic truth? 

(b) Could you still use our standard drafting symbols to represent designs 
with fluid logic elements? 

(c) Would there still be little circles? If so, what would they mean? 

(d) On our standard logic diagrams, a line represents a wire or an 
electrical path. What would a line represent in a fluid-logic circuit? 


