
Chapter 6 Practicing Design

1

6

Practicing Design
© David E. Winkel 2009

And now, let's do some design. In this chapter we present several detailed
examples of digital design, from the small, yet important, to the substantial
project. The goals are two: to illustrate good design methodology and to
introduce important design problems and their treatment. There is repetition of
some aspects of design, particularly the use of ASM charts, yet each example
has fresh material. We will indulge in some excursions into interesting topics as
they occur in the context of design. We hope that in this way the concepts will
be more meaningful to you than they would be as separate, isolated subjects.
These examples will be more meaningful if constructed and debugged using a
simulator and we urge you to do so, especially if you don’t do the laboratory that
accompanies this book.

Examples 1 and 2 illustrate some basic design issues related to human
interaction with a digital device. In example 3 we develop circuits to support the
conversion of information from a serial bit stream to a sequence of bytes and
vice versa, common operations in data communications. The traffic-light
controller in example 4 provides more practice in design. In examples 5 and 6
we bring together several design problems and techniques.

DESIGN EXAMPLE 1: A SINGLE PULSER

Our first illustration of design is the development of a circuit for handling a
common situation involving a human operator of a machine. Most real systems
involve humans, usually at switches, pushbuttons, and lights. Digital systems
generally (but not always) run at speeds many thousands of times faster than
human reactions. When a machine operator presses a button to initiate some
action, the digital device must detect this signal and perform the appropriate
steps. In the typical case, the machine completes the actions in a flash, and is
back interrogating the pushbutton signal again long before the operator can
release the button. We must develop a scheme so that the machine processes a
particular button depression only once. A circuit for this is called a single
pulser; it delivers a pulse only a single clock cycle long when a button is
pressed. If we have such a circuit, our digital machine may test the single-pulser
output instead of dealing directly with the pushbutton signal and may thereby
detect only one event as long as the button is down.

Chapter 6 Practicing Design

2

We will study this problem and its solution in several ways. First, we develop
the most fundamental solution.

Algorithmic Solution of the Single Pulser

Statement of the problem. We have a debounced pushbutton, on (true) in the
down position, off (false) in the up position. Devise a circuit to sense the
depression of the button and assert an output signal for one clock cycle. The
system should not allow additional assertions of the output until after the
operator has released the button.

Approach. We will develop an ASM solution to the problem. Since the problem
is stated in terms of clock pulses, we know we are dealing with a synchronous
system (for which we are grateful). Let us name the important inputs and
outputs. Clearly, the position of the pushbutton is of great importance to the
algorithm. The pushbutton signal can change at any time, independently of the
state of the system clock, so the signal is asynchronous, and our name for it
should have a terminal *: for instance, PB*. Call the output of the single-pulser
circuit PB.PULSE.

We know to be cautious about allowing asynchronous test inputs to creep into
our ASM charts. To avoid testing PB*, we should synchronize the signal using a
clocked D flip-flop. This flip-flop, with input PB* and output PB.SYNC,
becomes part of the architecture of our solution.

Control algorithm. Now we may write an ASM chart to describe the algorithm.
The algorithm will test PB.SYNC and produce an output PB.PULSE. The
algorithm has two states: one for detecting the first moment that PB.SYNC
becomes true (button goes down), and the other to wait until PB.SYNC becomes
false (button goes up). Figure 6–1 is the ASM.

Figure 6-1 A single pulser ASM

Chapter 6 Practicing Design

3

Implementing the design. The equation for the output PB.PULSE is

!

PB.PULSE = FIND• PB.SYNC

Once we have a way of producing the variable FIND, our problem is solved. To
obtain the value of FIND, we must implement a state generator for our ASM.
This is one of the few times we will depart from our favored one-hot
implementation and use an encoding to point to one of the two states; this is
natural for two-state machines since a one-bit pointer, a flip-flop, is all we need
as a bi-valued pointer. The pointer value is placed to the upper right of each
ASM state in fig. 6-1.

The two-state ASM will require one flip-flop to record the state, and logic to
develop the next-state input to the flip-flop. In our present design, the output of
one flip-flop has two distinct states, and this is sufficient to produce signals for
the two states WAIT and FIND directly, without decoding.

Look at Fig. 6-1. Formally, the flip-flop output is a state variable A, A = 0
representing the FIND state and A = 1 the WAIT state. Thus

!

WAIT = A

!

FIND = A
So we may just call the flip-flop output WAIT, and then we have

!

FIND =WAIT and the transition table becomes:

A PB.SYNC A(D)
0 0 0
0 1 1
1 0 0
1 1 1

We see that the D input to the state flip-flop is simply PB.SYNC! The resulting
trivially simple hardware is shown in Fig. 6-2. Lest you think the hardware
would be obvious without the guidance of an ASM, there is a humorous, obtuse,
and complex, circuit in the literature attempting to solve the single-pulser
problem, (that circuit clearly resulted from a bottom up approach; the reference
is mercifully omitted).

Figure 6-2. An ASM guided synthesis of a single-pulser circuit

We have purposely ignored initializing the single-pulser. On power-up the flip-
flops could have any of four values: 00, 01, 10, and 11. What will the circuit do
in each of these states? What should you do to make the circuit well behaved
under all circumstances? (assume the PB*.H signal is false at power-up)

Chapter 6 Practicing Design

4

A Combined Architecture-Algorithm Solution

Although the foregoing derivation is our most fundamental solution of the
single-pulser problem, there is another approach that illustrates an important
connection between the architecture and the algorithm in digital design. Suppose
we reason as follows. Our architecture consists of a synchronizing flip-flop for
PB*, with output PB.SYNC, and another D flip-flop whose function is to delay
the PB.SYNC signal by one clock time. The second flip-flop has input
PB.SYNC and output PB.DELAYED. Then our single-pulser output signal
PB.PULSE should be true only when PB.SYNC is true and PB.DELAYED is
still false. As soon as PB.DELAYED becomes true, we must stop asserting
PB.PULSE. Can we formalize these thoughts with an ASM? Of course, Fig. 6–3
is a one-state solution. This ASM requires no flip-flops for state generation,
since there is only one state. The equation for PB.PULSE is

!

PB.PULSE = PB.SYNC• PB.DELAYED

The implementation looks identical to our original circuit in Fig. 6–2 except for
a trivial change in the names in the interior of the circuit.

Figure 6-3 A single-pulser ASM in one state

Implications. This is an interesting phenomenon. We first had a two-state
system with minimal architecture (one flip-flop), and now we have a one-state
system with more inputs and more architecture (two flip-flops). Both solutions
yield the same hardware.

This reflects an important concept in digital design. The distinction between
architecture and algorithm is arbitrary. In general, by enlarging the architecture,
we may convert any ASM into one with fewer but more complex states. At the
limit, it is always possible to describe any algorithm in a single state. For
complex systems, this yields such a messy ASM that it is not useful;
nevertheless, it is technically correct. The vital point is that architectures and
ASMs are tools to assist us to understand our problem and to produce a clear,
correct implementation. The tools are to serve us, not control us!

Whereas we prefer the first solution to our example as more fundamental, there
is merit in the second solution also. Both result in equivalent (in this case,
identical) hardware.

Chapter 6 Practicing Design

5

A Single-Pulser Building Block

Having developed a circuit for producing a single pulse from a long input signal,
we may package the circuit in a black box and treat it as one of our design
building blocks. The single-pulser black box has an input PB* from an
asynchronous source, and produces a one-clock-cycle true output PB.PULSE
when the input becomes true. Whenever we need this type of behavior, we may
mentally plug in our black box, and when we build our circuit, we use hardware
similar to Fig. 6-2 in the box. It would be nice if the single-pulser box were
available as a standard, but usually it is not. However, we still treat the single-
pulser operation as a building block in our work.

Generalizing the Single-Pulser

Think about the human-machine interaction implied by our single-pulser
problem. When the operator presses the button, the single pulse promptly
appears (and disappears). The machine must have been ready to act on the pulse
signal. How did the operator know when it was okay to press the button?
Somehow, the operator must infer the correct time from the condition of the
machine. Usually this would mean a light or some combination of lights on the
control panel. The circuit controls these lights, indicating its readiness to process
a button depression. The single-pulser works well in this common situation.

Now suppose we treat the operator-machine interaction differently. Let the
operator press a button at will but require the operator to hold the button down
until there is some indication that the machine has received the signal. Then the
machine may be in any state when the button is depressed, and only when the
circuit is ready to respond to the button will the light come on.

The single-pulser will not work in this case, but we can handle the situation with
an ASM structure that looks for the pushbutton depression, then lights the light
until the operator releases the button, and then performs the desired operation.
Figure 6-4 is a typical form of this ASM. (In Design Example 5 in this chapter,
we discuss an additional variation of the single-pulser algorithm.)

Chapter 6 Practicing Design

6

Figure 6-4. Diagram of an ASM if the
operator may press a pushbutton at any
time. In this algorithm, the machine
waits until the operator releases the
button before responding

DESIGN EXAMPLE 2: A SYSTEM CLOCK
The clock is the master pacer in digital systems, and we must design it
carefully. A good clock is perhaps the most potent debugging tool a
designer can put into a system. At the least, the clock must have an
automatic mode whose frequency may be fixed at some high value and a
manual mode that generates one hazard-free active clock edge when a
pushbutton is depressed. To do this, there must be a mode switch to
select automatic or manual status. Throwing the mode switch must not
shorten a clock cycle in the automatic mode. If the mode switch were
flipped 10 percent of the way into a clock cycle, thereby truncating the
cycle at that point, our circuit could suffer from timing problems. We
must let the last cycle run its normal course before the clock system
enters the manual mode.

Our approach to design requires that we move difficult, universal concepts
up front so that we can solve them once and then apply them to all
projects. The system clock is an important concept so let's design a
circuit for it.

S t a t e m e n t of the Problem
(a) Design a hazard-free system clock that runs in two modes,

automatic and manual. The automatic mode is a fixed-frequency
mode derived from a continuously running clock or oscillator.
(Crystal controlled oscillators are a standard commercial module)
The manual mode should produce a true clock output when a pushbutton is
depressed, and a false output otherwise.

(b) Activating the mode switch must never cause truncation of a clock cycle.

Chapter 6 Practicing Design

7

(c) In the automatic mode, the clock circuit should ignore the manual
pushbutton.

Digesting the Problem

There are two inputs, from a debounced mode switch and from a debounced
pushbutton. We may formalize the variables in the problem. Let the mode
switch output be M A N , and let M A N = T in the manual mode and M A N
= F in the automatic mode. Let the manual pushbutton's output be PB, and let
PB = T when the button is down and PB = F when the button is up. Let the
clock output be C L K . Since we are dealing with a clock for synchronous edge-
triggered systems, it is natural to let C LK = T be the high voltage level and
C L K = F be the low voltage level, although this choice is not essential to the
design.

In digesting the problem, we uncover a crucial point: the clock output must be
free of hazards. In Chapter 4, you learned about the catastrophes that will occur
when clocks deliver spurious edges. The most general way to avoid hazards is to
avoid gates on the lines that must be hazard-free. How can we build something
without gates? Commercial flip-flops are designed to have hazard-free outputs,
provided the set-up and hold time constraints are met; violating these conditions
can lead to meta-stability which is a disaster leading to system failures at
unpredictable times. Errors every 10 minutes are easy to find, a failure every 10
years probably exceeds the useful life of most digital systems; it’s the ones that
fail every 10 hours or 10 days that give a designer fits.

We will produce the clock output directly from a flip-flop, paying particular
attention to stay within its design constraints. With hardware, don’t take
chances!

Now we are ready to derive an ASM chart for our system clock circuit.

Algorithm for the System Clock
Our system is a synchronous circuit clocked by a continuously running oscillator
that will drive the system clock ASM. The output C LK has two levels, T and F,
so we might use two ASM states, one for C L K = T and the other for CL K =
F. In the automatic mode, we would expect to flip back and forth between the
states constantly. Our design problem is to fit the manual mode operations into
this framework. In the manual mode, the ASM moves to whichever state reflects
the PB position. Figure 6–5 is the ASM chart and the stars on MAN* and PB*
signals alert us to potential difficulties that must be resolved before we rush to
an implementation.

Chapter 6 Practicing Design

8

Figure 6-5. A system clock ASM

This ASM ignores the pushbutton unless the mode switch is in the manual
mode. In the automatic mode, the active state alternates between LO and HI,
producing a C LK output of half the ASM clock frequency, as shown in the
following timing diagram:

The ASM formulation clearly demonstrates that the automatic mode overrides the
pushbutton and that, whenever we switch from the automatic to the manual mode,
the last automatic clock phase exists for its full duration, without any shortening.

What about the *’s on MAN and PB? The usual engineering analysis argues that
they can be ignored in this case. The machine is always either in one state or in the
other. When the mode switch is changed from automatic to manual, the ASM
either detects the change during the present ASM state, or it doesn't. I f it does, at
the next state transition it moves into the manual mode; if the ASM misses the
change, it remains in the automatic mode for one more clock cycle before entering
manual mode. In either event, in this simple ASM there is nothing to go wrong as
a result of the asynchronous nature of the MAN signal. A similar argument
applies to PB. So we can drop the “*” on these signals in the ASM chart of
figure 6-5.

A deeper analysis should inject extreme caution into this simplistic
rationalization. Meta-stability is an ever-present danger when a flip flop’s data
inputs change at the same time as the clock, (this is discussed in appendix *). At
all costs you must avoid this, so without further ado lets dispose of this potential
problem by synchronizing MAN* and PB*

Implementing the Circuit

Chapter 6 Practicing Design

9

The transition table for the ASM is:

Present state Next State Condition

LO LO

!

MAN •PB
 HI

!

MAN+MAN •PB = MAN+ PB
HI LO

!

MAN+MAN •PB = MAN+ PB
 HI

!

MAN •PB

From this the equations for CLK(D) are readily derived by plotting on a K-map:

(a) (b)

You may be tempted to use the circling in (a) but we know from a discussion of
hazards that it may contain a potential glitch, so, without thinking about it, use the
circling at (b). Gates are cheap, errors expensive.

!

CLK(D) = C• (M + P) +M • P
Let's use the traditional gate method for implementing the state generator; one
flip-flop will encode the two states in our ASM. The purpose of the design is to
produce the system clock output CLK. We have already decided to produce the
system clock signal CLK as the output of a flip-flop. According to the ASM,
CLK is true in state HI and false in state LO. In Fig. 6-5, we chose to represent
LO by 0 and HI by 1. This is the same behavior as the CLK output: false in LO
and true in HI. In this case, we get our desired CLK output from the same flip-
flop used in the state generator. Very convenient.

Both voltage signal forms will be available for the debounced switch and
pushbutton variables. This almost completes our solution to the design problem
except for the dangling direct set and clear flip-flop inputs. What should be done
about them?

Figure 6-6. A traditional gate implementation of the Clock ASM

In our own practice we never use JK versions of state generators because of the
obscure process leading from an ASM to a final circuit. However, in this one

Chapter 6 Practicing Design

10

case, it does lead to the somewhat simpler circuit of Fig. 6-7 and you may use it
if you wish and are willing to accept it on faith. (It does have the interesting
property that the external feedback of Fig. 6-6 is subsumed into the internal
feedback of the JK flip-flop. (As a pedagogical exercise, JK synthesis is covered
in appendix *)

Figure 6-7. JK implementation of the clock ASM

As a designer, the first thing you should do after deriving a hardware
implementation of an ASM is to check the logical correctness of your derivation
by simulation.

There are many levels of simulation, ranging from detailed modeling of the
analog behavior of gates that account for loading and give accurate timings, to
simple logic simulations, which ignore many fine grain details. At this stage we
want a simulation at the level of ASM transitions that is system clock transitions.
Herein lies a problem: real circuit simulators perforce work at the gate level and
there will ordinarily be many gate level transitions after leaving one ASM state
and arriving at the successor state. At the ASM level we are not interested in
these intermediate transitions; that comes later after you have verified that your
design is logically correct and when you want to find out how fast it runs. At the
logic level we are concerned only with correctness, not speed. Not only that,
when working at this level you ordinarily want to work with a manual clock so
intermediate gate transitions can ripple to completion, so you can inspect the
final results for that ASM state. After verification of all ASM transitions, you
will then want to run your simulation at full clock speed to verify correctness at
that level.

Even if your final hardware circuit runs with a fixed clock you can still debug a
simulated version using a manual clock, a powerful debugging tool and one we
highly recommend.

The circuits of Figure 6-6 or 6-7 are a neat way to trick a gate level simulator
into being an ASM level simulator. All gate level transitions will still be
properly sequenced but only the final result will show after each depression of
the manual clock pushbutton.

As a matter of course, always use the output of circuit of fig. 6-6, or the JK
version in figure 6-7, to drive all clocked modules when doing logic-level
simulations of digital systems.

DESIGN EXAMPLE 3. Serial Data Transmission.

As a designer, you will sooner or later have to manage movement of data and
you have a choice of moving it in parallel chunks, (byte or word), or breaking

Chapter 6 Practicing Design

11

chunks into bit streams at the sender and re-assembling bit streams into chunks
at the receiver.

Intuitively one would assume parallel transmission would be faster since a
chunk, as opposed to a bit, is transferred every clock cycle. There’s a reason
clock is italicized here. Whose clock?

As long as your data is localized to a single Silicon chip you will have tight
control of clock skew and you can rely on data and clocks being tightly locked
together at both sender and receiver. In this case wider chunks are better and this
drives designers to ever-wider bus widths.

As soon as data moves off chip an entirely different design constraint rears its
ugly head. With a parallel data bus you must guarantee two things:

a) bits must arrive at the destination with negligible inter-bit skew.

b) more importantly, a separate wire must carry a clock locked to the data.
While that’s trivial at the sender it is very difficult to guarantee it at the
receiver; as clocks get faster it can become impossible.

In modern systems we bypass these difficulties by breaking data chunks into
serial bits, thereby elimination skew, and more importantly, using transmission
protocols that allow the serial bit stream itself to encode a clock locked to bit
intervals. No matter how long the wires, we can then recover a bit clock at the
receiver.

SERIAL-PARALLEL DATA CONVERSIONS

In this example, we design circuits to convert parallel data into serial form and
at the receiver convert serial data back into parallel form. Our example has two
independent circuits: a parallel-to-serial converter and a serial-to-parallel
converter. Both converters deal with 8-bit parallel bytes, the conventional unit for
data transfer.

Specifying the Problem

Parallel-to-serial conversion. The parallel-to-serial (P→S) converter accepts 8-
bit bytes from some source and transmits the bits serially on a serial-out line
(SO) at a specified bit rate. As long as the system is running, the serial bit rate is
constant, and the P→S process never stops. Bit rates range from 56k (phone
modems) to 460 mega bits/second in USB devices.

The need to maintain a valid serial stream of data at this fixed rate places a
severe constraint on the device that supplies the 8-bit bytes: whenever the P→S
converter needs a new byte, the new byte must be present. But the byte supplier
is running at its own speed, engaged in its own duties, only one of which is to
supply bytes to the P→S converter. A simple way to handle such a situation is to
provide a one-byte buffer register in the converter to hold the incoming byte
whenever the sending device supplies it. Then our converter can move the data
to another spot when it is ready to process the byte, thus freeing the buffer to
hold another byte.

Chapter 6 Practicing Design

12

(The term buffer has two meanings in digital design. Previously in this book, the
word has meant a source of power for a logic signal. Here, we use the term in
the software sense of a temporary storage area to accommodate differences in
the operating characteristics of a source and a destination.)

We need some way to notify the supplier of bytes when it is time to fill the
converter's buffer with a new byte. The byte supplier must not provide a new
byte too soon, lest the new byte destroy the previous byte in the buffer before
the P→S converter has processed it. On the other hand, a basic presumption of
this system is that the byte supplier must not fail to supply a byte on time;
otherwise, we cannot supply the continuous stream of bits required by the serial-
out line. We may use a simple one-way signal to tell the byte supplier to fill up
the buffer. No response from the byte supplier (other than filling the buffer!) is
necessary, since we cannot tolerate any slippage and our converter could do
nothing about a failure if one occurred. Let's use a variable FILLIT as a signal
to the byte supplier; whenever the converter accepts a new byte from its buffer,
the converter will toggle (complement) FILLIT. At a time safely before the
converter needs the next byte, the byte supplier must sense this change in
FILLIT, and provide a new byte into the buffer. FILLIT behaves like a
modulo-2 counter.

Bui ld ing the P→S Converter

Design. The architecture will have an 8-bit buffer register to hold a byte from
the byte supplier, and an 8-bit shift register to hold a byte while it is being
disassembled and shipped out bit by bit over the serial-out line. Also, there will
be a controlled flip-flop FILLIT to tell the byte supplier when to deliver another
byte.

The basic timing element for parallel-to-serial conversion is the serial bit time,
so a clock operating at the P→S bit rate is a natural system clock for our
synchronous design.

There are two approaches to the design of the control algorithm. We could draw
a nine-state ASM chart that produces a serial SO bit in states 1-8. This ASM
could load a byte from the buffer into the shift register in state 0 and shift the
byte one position to the right in each of the other eight states.

Alternatively, we can view the ASM as having a single state, with the
architecture containing a binary counter capable of counting from 0 through 8,
to distinguish the nine activities per byte. Let's adopt this latter view and add a
counter to our architecture. The ASM in Fig. 6-8 is then self-explaining; Fig. 6-9
shows the supporting architecture.

Fig. 6-8. ASM for a single buffer P→S converter

Chapter 6 Practicing Design

13

Fig. 6-9. Architecture for the single buffered P→S converter

An alternate ASM and architecture would be double buffering. Two shift
registers feed a multiplexer, while one is shifting the other is loading with roles
exchanged when the shifter becomes empty. The relative merit of this ASM and
architecture is left as a problem.

Both architectures are straightforward, fundamentally because the P→S clock
belongs to the sender and is fixed. Things are not so simple for the receiver.

Bui ld ing the S→P Converter

Clocks are the problem here. Consider a phone or cable modem that carries a
data signal only; even if you had two separate signal paths, one for data and one
for clock, there is no chance the relative cable delays would be equal. Phone
signals often travel miles before reaching a destination and once a signal enters
the phone network, who knows what insults it will encounter in transit.

Figure 6-10. Input and output signals in a serial data path

Somehow, we must be able to take the received signal, in isolation, and recover
a clock from its data-without reference to the sender’s clock. Fortunately, a
remarkable analog circuit called a Phase Locked Loop (PLL) will do just that.
(see appendix *)

Chapter 6 Practicing Design

14

Fig. 6-11. Using a PLL to clock a received analog signal

Now that we have a clock locked to the data we are back in familiar
synchronous design territory. All we need to do is make sure we sample the
received analog signal after each transition has had time to stabilize before
clocking it into the receivers shift register.

One caveat remains: PLL’s require time to lock onto an incoming analog signal.
Assume the incoming line is quiescent with no L→H or H→L transitions the
PLL can use for lock. Before sending data we must preface it with a special
SYNC pattern, distinct from any standard data byte, to allow the PLL to acquire
lock and start producing clock edges for downstream data manipulation. The
number of bits and bit pattern in the SYNC preamble are protocol dependent but
in any case will be known to the receiver.

Now that we are back on familiar turf, the ASM and architecture for a single
buffered S→P converter are straightforward exercises.

Figure 6-12. Serial to Parallel ASM

We leave the design of a double buffered ASM and architecture as a
straightforward embellishment of the single buffered protocol.

Chapter 6 Practicing Design

15

A more complete discussion of a popular serial protocol, USB 2.0, is covered in
appendix* for those who wish to delve deeper into clock recovery and serial
protocols.

DESIGN EXAMPLE 4: A TRAFFIC-LIGHT CONTROLLER

This example was inspired by a similar problem in Carver Mead and Lynn
Conway's pioneering book, Introduction to VLSI Systems. We will solve
the problem with our structured design techniques.

Statement of the Problem

A busy highway is intersected by a little-used farm road, as shown in Fig. 6-13.
The farm road contains sensors that cause the signal CARS to go true when one
or more cars are on the farm road at the positions labeled `C.' We wish to control
the traffic signals at the intersection so that, in the absence of cars waiting on the
farm road, the highway light will be green. If a car activates the sensor at either
position C, we wish the highway light to cycle through yellow to red and the
farm-road light then to turn green. The farm-road light is to remain green only
while the sensors indicate the presence of one or more cars, but never longer than
some fraction of a minute, after which it is to cycle through yellow to red and the
highway light is to turn green. The highway signal is not to be interrupted again
for farm-road traffic until some fraction of a minute has elapsed.

Figure 6-13. The location
of the traffic signal and
sensors.

Preliminary Considerations

The highway traffic is given priority, but not to the extent that the farm-road
traffic can be stalled indefinitely. Since the default condition is a green light on
the highway, we do not need any sensors in the highway lanes. To keep the
example uncluttered, we will assume that the outputs of the sensors are combined
external to our design to produce the single signal CARS, and that this signal
satisfactorily indicates the presence of cars desiring to enter or cross the highway.
We might ask what signals the traffic lights must receive to activate their three
colors, but we defer such inquiries because we would like our solution to be
independent of any particular brand of traffic signal until we are ready to specify
one.

The control of the traffic signals involves four intervals: the minimum time the
highway light will be green, the maximum time the farm-road light will be
green, the duration of the highway's yellow signal, and the duration of the farm-

Chapter 6 Practicing Design

16

road's yellow signal. For simplicity, we assume that the first two intervals are
the same and that both yellow-light intervals are the same. To generate signals
representing these two intervals, we plan to have a timer, driven by a (high-
speed) master clock and initiated by a starting signal START.TIMER.
Whenever the timer is started, two output signals, THOLD and TYEL, are
negated. If the timer is not interrupted, the two signals will be asserted after their
respective intervals have elapsed; the signals will remain asserted until the timer is
restarted with START.TIMER. The same timing unit and the same enabling
signal will suffice for both timings, since the two intervals do not overlap.

Our preliminary architecture is shown in Fig. 6-14.

Figure 6-14. Preliminary architecture for traffic light controller

The Control Algorithm

The control of the traffic signals breaks naturally into four events, which will
result in four ASM states:

State HG: Highway light green (and farm-road light red).

State HY: Highway light yellow (and farm-road light red).

State FG: Farm-road light green (and highway light red).

State FY: Farm-road light yellow (and highway light red).

When the highway light is green (state HG), the controller must be alert for
farm-road traffic, and, if cars are on the farm road and sufficient time has elapsed,
must cycle the lights through state HY to state FG. In state FG, when the farm-
road light is green, the controller must be prepared to cycle through state FY to
state HG whenever no cars remain on the farm road or if the stipulated time has
elapsed. These observations lead quickly to the ASM in Fig. 6-15. Each state
tests one of the two intervals THOLD or TYEL, and so, as we enter each state,
we must start the timer unit.

Chapter 6 Practicing Design

17

Figure 6-15. ASM for the
traffic light controller

In state HG, the ASM describes the mutual requirement of farm-road cars and a
sufficiently long interval, using a single test of the product of THOLD and
CARS. In state FG, the ASM uses separate tests of THOLD and CARS to
describe the logic resulting in the escape to the next state. These constructions
seem natural to us, so we used them. Other ways of representing the test
conditions will lead to exactly the same output equations and state generator; for
instance, follow the synthesis below, and then repeat the synthesis with these
tests:

Realizing the ASM

From the ASM chart, we derive equations for the outputs and we tabulate
information that will lead to the construction of a state generator. The natural
parameters to describe the condition of a traffic signal are, of course, the colors
of the signal. We derive:

Chapter 6 Practicing Design

18

HL.GRN = HG FL.GRN = FG
HL.YEL = HY FL.YEL = FY
HL.RED = FG + FY FL.RED = HG + HY

The signal for starting the timer unit is

START.TIMER = HG•THOLD•CARS + HY•TYEL
 + FG•(THOLD + CARS) + FY•TYEL
(the conditional outputs with the down arrows in Figure 6-15 mean the timer
should be started at the end of the conditional time).

While the MUX method for next state generation is largely of historical interest,
we will use it here for pedagogical purposes. All finite state machines use the
present state and status inputs to generate the next state; we care not how, as
long as the hardware comes up with the proper next sate. Using mathematical
function notation:

NEXT STATE =f (PRESENT STATE, STATUS INPUTS)

Lets use table lookup, (think MUX!), to implement the state generator function,
“f”.

We assume an encoded state generator, which will require two D flip-flops. The
encoding is arbitrary: we use B and A as the state variables, and the following
assignment:

State B A
HG 0 0
HY 0 1
FY 1 0
FG 1 1

For such a simple ASM, we could write down the state generator by inspection.
Nevertheless, in almost every design we find it useful to tabulate the conditions
for changes in state. Table 6-1 shows the next-state conditions for our traffic
light controller. Figure 6–16 shows the state generator.

Present state Next state Condition
 Code BA
HG 0 HG 00

!

THOLD•CARS
 HY 01

!

THOLD•CARS
HY 1 HY 01

!

TYEL
 FG 11

!

TYEL
FY 2 FY 10

!

TYEL
 HG 00

!

TYEL
FG 3 FG 11

!

THOLD•CARS
 FY 10

!

THOLD + CARS

TABLE 6-1. Conditions for state transitions in the
traffic light controller

Chapter 6 Practicing Design

19

Figure 6-16. A Multiplexer state generator for the traffic light controller

Choosing a Particular Traffic Signal

The ASM's outputs that are to control the traffic signals are expressed in terms
of the active color of the lights. Now suppose we select a particular traffic signal
and, reading the instructions, find that each signal is controlled by a 2-bit code
that specifies which of the three colors is active. In Fig. 6–17 we show this
particular choice of a traffic light, adopting T = H for the code. Now we may
derive logic equations that express the bits of the manufacturer's code in terms
of our traffic-light variables:

HL1=HL.YEL HL0=HL.RED

FL1=FL.YEL FL0=FL.RED

Now that the behavior o f the particular traffic signal has been expressed in our
nomenclature, there remains only to plug in the particular expressions for each
light's colors to complete the implementation. Using the ASM output equations,
we get:

HL1=HY
HL0=FG+FY
FL1=FY
FL0=HG+HY

Our refusal to commit ourselves to a particular traffic signal left us with an
incomplete early statement of the architecture in Fig. 6–14 but allowed us to
form a solution independent of the brand. When we finally settled on a brand, in
Fig. 6–17, we completed the solution without altering our original work. This is
an important technique, and represents good top-down design.

Chapter 6 Practicing Design

20

HL1 HL0 HL
0 0 GRN
1 0 YEL
0 1 RED

FL1 FL0 FL
0 0 GRN
1 0 YEL
0 1 RED

Figure 6-17. A particular traffic light for Design Example*

DESIGN EXAMPLE 5: THE BLACK JACK DEALER

As a slightly more complex example we will design a machine to simulate the
dealer’s actions in a black jack game. Black jack is a familiar card game
involving a dealer and one or more players. The players can exercise their
judgment but the rules specify what the dealer will do with each new card he
receives.

In the supplementary laboratory that accompanies this course you will use a
simulator to build a gate level implementation a real computer and, for the
adventuresome, go on to implement that design real hardware. Absent this
exposure, you can get some feeling for real world design by simulating the
Black Jack Dealer on a commercially available simulator, and we strongly urge
you to do so.

The Rules of Play for the Dealer
The cards have values of 1 (ace) to 10 (10 and face cards). An ace may have the
value of 1 or 11 during the play of the hand, whichever is advantageous. The
dealer deals himself cards one at a time, counting ace as 11, until his score is
greater than 16. I f the dealer's score does not exceed 21, he "stands," and his
play of the hand is finished. I f the dealer's score is greater than 21, he is "broke"
and loses the hand. The dealer must revalue an ace from 11 to 1 to avoid going
broke but must then continue accepting cards ("h its") until the count exceeds 16.

Stating the Problem

These rules understood, we may state our hardware design problem. With a
human operator to present cards to the Black Jack Dealer machine, play the
dealer's hand to produce Stand or Broke.

This is an algorithm, and as such, it is always helpful to think about it in as
many ways as possible before casting it into ASM formalism. For readers who
come from a software background, we could also state the problem in the form
of a program written in pseudo code. This suppresses most of the machine
details, including the detailed state timings that we must eventually specify. I f
we don't understand the problem at an operational level, we surely cannot build a
correct machine! Here is a pseudo code statement of the dealer's algorithm. The

Chapter 6 Practicing Design

21

variables have obvious meanings, except for ace11flag, which remembers if
the algorithm has valued an ace as 11 points.
new_game: {score=0;
 ace11flag=false;
 stand=false;
 broke=false;}

 hit: score=score+card_value; /* accept a card*/
 if (card=ace and ace11flag=false)
 then {score=score+10;
 ace11flag=true;}

another_hit?: if (score <= 16) goto hit;
 if (score <21)
 then { stand=true;
 display score;
 goto new_game;}
 if (ace11flag=true)
 then { score=score-10;
 ace11flag=false;
 goto another_hit?;}

 else {broke=true; goto new_game;}

Since this is pseudo code we are free to develop our own program style. If you
prefer stating the algorithm in your favorite high-level language that’s OK too.
Do whatever it takes to get a rock solid feel for any algorithm before even
thinking of hardware implementations.

You will note the liberal presence of goto statements in our algorithm,
something usually discouraged in high level languages; but state machines are
essentially goto constructs, where state generation hardware computes the next
state as a function of present state and status variables. Hence we depart from
standard high level programming conventions by explicitly coding with goto’s
to more closely conform to state machine hardware. Further, notice that we use
the {…} notation to indicate operations that hardware can carry out in parallel—
in one state—something that software must do sequentially.

Digesting the Problem

We will call the hardware device Dealer. The basic questions we might ask in
our first stab at architecture are: How will the operator present cards to Dealer?
How will the operator know what the result of each card is? We can see that the
operator interacts closely with the machine:

a) Dealer must signal the operator when to deal a new card.
b) The operator must signal Dealer when the new card's value is ready for

processing.
c) Dealer must tell the operator if Dealer stands, went broke, or if the hand

is still in progress.
d) When Dealer stands, the operator must be able to see the point value of

Dealer's hand.

These thoughts suggest that an important aspect of Dealer's design is the
interaction between the machine and the human. Assuming that the operator

Chapter 6 Practicing Design

22

knows the binary number system, we choose a set of four toggle switches to
hold a card value of from 1 to 10 in binary. These toggle switches will act as a
register for the input data. A set of five lights is a simple way to display Dealer's
score, which cannot exceed 21. To control the interaction, we can give the
machine a set of status lights: Hit, to tell the operator when to enter a new card
for Dealer; Stand and Broke, to inform the operator of the final results of the
hand. We could provide a New.Game status light to show when to begin a new
hand, but this is unnecessary, since either Stand or Broke must be signaled
when the previous hand is complete, and thus the operator knows when a new
game may begin without a special New.Game light.

We must not forget to give the operator a way to tell Dealer when to process a
card; therefore, we will specify a pushbutton switch Card.Ready that the
operator can press.

At this point we have a fairly good idea of the interface between Dealer and the
human operator. Figure 6-18 shows the general plan. This is an important step in
our design, for at this point we may go to our potential operators and describe
how they will use the Dealer machine. Presumably, the operators don't much
care what Dealer is like inside, but they will be interested in the operating
instructions—the user's manual. Talking to users at this stage in the design can
help avoid agonizing redesign later, in case we have misunderstood the problem.

Figure 6-18. The Black Jack Dealer’s operator interface

Most of the architecture is not yet specified—only the interface signals.
Hopefully, by now that we have a clear enough understanding of the problem to
begin work on the control algorithm.

Initial ASM for the Black Jack Dealer

With the operational algorithm as a guide, we may propose a hardware
algorithm, using the ASM notation. As usual, our design will be synchronous,
running from its own internal clock at a speed independent of the human
operator's actions. As we develop the ASM, we will gain insight into the internal
architecture required by Dealer. Figure 6–19 is a first attempt to describe an
ASM for Dealer. The ASM assumes the following architectural elements:

a) Memory flip-flops for the HIT, STAND, and BROKE signals.
b) A register to hold the current card value.
c) A register to hold SCORE.
d) A flip-flop for ACE11FLAG.
e) A black box to add, subtract, and clear the SCORE.
f) A black box to report if CARD = ACE, SCORE > 16, and SCORE >

21.

Chapter 6 Practicing Design

23

Figure 6-19. A primitive ASM for the Black Jack Dealer with too many states
and an error

Chapter 6 Practicing Design

24

Reducing the Number of States (general discussion)

Our ASM has quite a few states, and you may wonder if this is desirable. States
are the fundamental element of a hardware control algorithm, but they may have
two undesirable side effects:

(a) Each state requires a clock cycle to execute.
(b) Overall complexity may increase and lead to more hardware.

Complexity issues are case by case specific and it is difficult to formulate
general rules. For one-hot designs, reducing states clearly causes a
corresponding reduction of state flip-flops and corresponding reduction of clock
cycles. However, next state logic usually gets more complicated and this may
increase the total number of circuit elements. The trade off will ultimately
reduce to a 3-way consideration of speed vs. complexity vs. algorithm
transparency. Our strong inclination is to always favor algorithm transparency
and recommend this path until you become an experienced designer where
circumstances may sometimes dictate ultimate speed or minimum hardware.

For encoded state machines the issues are a good deal murkier. Consider the two
state machines in figure 6-20, one of 4 states and the other of just a single state.

(a)

(b)

Figure 6-20 Converting a four-state ASM (a),
into an equivalent one-state ASM (b)

Chapter 6 Practicing Design

25

This extreme example reduces the entire ASM into a single state, technically
this is always possible by using auxiliary flip flops (here B and A) to remember
the last path followed; knowing that path provides enough history to allow
calculation of the next path. Obviously, this recasting o f the algorithm, although
technically equivalent to the original four-state version, is neither as clear nor as
meaningful. The test inputs B and A are artificial and have no real meaning in
the algorithm. Since we want maximum clarity, we reject this particular single-
state ASM, and in general take a dim view of such esoteric tricks. (We leave it
as a problem to compare the speed and hardware complexity of the two
approaches in Figure 6-20).

There is one case where using auxiliary variables makes sense: a purely
sequential ASM—a cycle of states with no tests—where the natural auxiliary
variables are simply bits of a counter used to cycle through the states; the state
generator is then that binary counter, which counts up to the maximum state value
and then resets to 0. On occasion, we may increase the clarity by making the
counter a part of the architecture, as in Fig. 6-21b. In both designs, the hardware is
the same. Choose the algorithm that seems clearer for your problem. Design
Examples 3 and 4 in this chapter also illustrate this point.

(a) (N+1) state cyclic ASM (b) One-state ASM with counter architecture

Figure 6-21 Equivalent formulations of a cyclic process of N+1 elements

Reducing the Number of States (black jack machine)

In general, use moderation in eliminating states, having increased clarity as your
goal. In the Black Jack Dealer ASM, we may easily incorporate the outputs of
states LIGHT.STAND, LIGHT.BROKE, and CANCEL.ACE=11 into conditional
outputs within state ANALYZE. We may also eliminate the NEW.GAME state.

In the Black Jack Dealer machine, neither saving states, or complexity of this
simple ASM, is apt to be serious. It is likely that the human operator is much
slower than the clock; so superfluous clock cycles will not cause difficulty.
Also, we have straightforward methods of developing state generators from
ASM charts of any reasonable size.

Nevertheless, as practice in dealing with more complex and demanding designs,
we will attempt to reduce the 10 states to a smaller number. Our basic technique

Chapter 6 Practicing Design

26

is to introduce conditional outputs into an existing state, to replace the
unconditional outputs of a separate state. States are candidates for collapse into
the previous state if the state's activities (particularly its outputs) do not need to
follow the activities of its predecessor state sequentially. Such state-saving
moves do not necessarily save hardware. Although the number of flip-flop
memory elements for states may decrease, the command output logic usually
becomes more complex. Experience shows that a moderate effort to save states
is worthwhile, as long as we maintain clarity in our design.

Errors in the Algorithm

The ASM in Fig. 6–19 contains two errors. Can you find them? They are both in
the interface with the operator, and you have seen both earlier in this chapter.
Consider the Card.Ready button and its use. First, we assume by now that you will
have debounced the CARD.READY signal. (We always debounce mechanical
switch signals that are used to provide test inputs in our ASM.) But
CARD.READY changes with the operator's actions and is not synchronized with
the ASM's clock. In our ASM, we should therefore label this signal
CARD.READY* (* for asynchronous). We hope you noticed this error, since
asynchronous inputs are a common problem and you must be alert to them. Our
treatment of this asynchronous test input is immediate and ruthless. Without
pausing to investigate whether this asynchronous signal will cause problems, we
eliminate it. We synchronize CARD.READY* with a D flip-flop operating
synchronously with our ASM. In so doing, we add an element to our architecture.
Call the output of the flip-flop CARD.RDY.SYNC. It is this new synchronized
signal that the ASM tests in the WAIT.FOR.CARD state.

Races, Again (for encoded state machines)

Let's again explore the problems introduced when an ASM tests an asynchronous
input. Assume that we have allowed the CARD.READY* signal to remain in
the ASM and that we have made an encoded state assignment.

Figure 6-22 A segment of an encoded ASM with a transition race

Figure 6-22 is the relevant part of the ASM. In state 0000, when
CARD.READY* = F, the state generator logic will be preparing to change the
state variable C from 0 to 1. I f CARD.READY* becomes true in state 0000,
the state generator logic will switch C back to 0, and B and A to 1. If
CARD.READY* changes to true very close to the transition point for leaving

Chapter 6 Practicing Design

27

state 0000, the inputs to the state flip-flops will be changing when the clock
edge occurs, and the resulting outputs of flip-flops C, B, and A are
unpredictable. The next state might be any of eight possibilities: 0000, 0001, 0010,
0011, 0100, 0101, 0110, or 0111 ! In this particular example, states 0000, 0011, and
0100 would be tolerable, but the rest are clearly erroneous. The situation is a
transition race, and you must eliminate it.

By modifying our ASM chart in a straightforward way (but retaining the
asynchronous CARD.READY* signal), we can illustrate another type of race,
the output race. I f we manipulate HIT in conditional outputs in state
WAIT.FOR.CARD instead of in separate states, we have the partial ASM in Fig.
6-23. Should CARD.READY* change from F to T near the clock edge, not
only is the next state in doubt, but since the input to the HIT flip-flop is
changing from T to F, the HIT output is also uncertain. We may reach the
GET.CARD state successfully, but the Hit light may still be on! The output race
is characteristic o f outputs that are conditional on asynchronous test inputs. You
must eliminate these races.

Figure 6-23. A segment of an ASM with an output race

There is a welter of traditional and complex techniques for dealing with the
problem of races by manipulating state assignments. The straightforward way,
as you know, is to eliminate the cause of the problem! I f all test inputs are
synchronous with the ASM clock, there can be no races. It is tempting to study
your particular ASM to see if a particular asynchronous input can cause trouble.
Usually, this is wasteful, mind-cluttering activity. Synchronize the input and
move ahead.

This sweeping simplification works because the ASM's action depends on only
one (synchronized) input at a time. If the control of the ASM requires the
simultaneous synchronization of more than one asynchronous input, no method
will produce reliable results. This is bad design of the external interface. Modern
practice requires that all relevant inputs be stable (unchanging) at the time the
single status signal announces that an event is to occur. For our Black Jack
Dealer, we require that the card switches be set prior to the single
CARD.READY* announcement.

Races, Again (for one-hot state machines)

Let’s contrast one-hot state machines with encoded state machines. Encoded
controllers use a set of flip-flops as a pointer to states; one-hot controllers are

Chapter 6 Practicing Design

28

pointer-less, using one flip-flop per state, and thus are inherently decoded state
representations. Figure 6-22 will now have three separate D-flip-flops:
WAIT.FOR.CARD, REQUEST.HIT, and GET.CARD.

All clocked flip-flops have a time window surrounding the clock edge when
inputs must not change: set-up-time before the clock edge, hold-time after the
clock edge. If D, JK, or T inputs change in this window the flip-flop can settle
unpredictably into either a 0 or 1 state. If CARD.READY* changes during these
time windows then REQUEST.HIT and GET.CARD could wind up with all 4
possible values: 00, 01, 10, and 11. The 00 configuration would correspond to a
no-hot state and the 11 configuration to a two-hot state, either would be
disastrous.

The discussion for output races is unchanged from that in Figure 6-23. Why?

So, synchronize all asynchronous test inputs as a matter of course!

Process Synchronization

Our problems are not quite over. Suppose the operator presses the Card.Ready
button. What happens if, as is likely, the ASM completes its actions in response
to the CA RD .RDY .S YN C signal and returns to the WAIT.FOR.CARD state
before the operator has released the pushbutton? Dealer will process the same
card again, since CA RD .RDY .SY N C is still true. This is the problem studied
in this chapter's first example, the single-pulser. Because of its importance and
the subtlety of some of the implications, we will discuss the subject again, from
a different perspective.

Handshakes. The problem is a failure to complete a full handshake between
the operator and the dealer. A full handshake is an important mechanism for
controlling the activities of two independent but cooperating processes. Frequently
one device (A) must issue a request for action to another device (B). Since the
speed and state of device B are unknown to device A (and vice versa), we need a
general method by which device A can request action of device B and can be
certain that device B has recognized the request. The sequence of events in the
full handshake is:

(1) Device A senses that device B is not still acknowledging a previous
request and requests an action (device A extends its hand).

(2) Device B senses the request and acknowledges receipt of the request
(device B extends its hand).

(3) Device A senses device B's acknowledgment and drops its request
(device A drops its hand).

(4) Device B senses that device A has recognized device B's
acknowledgment and drops its acknowledgment (device B drops its
hand).

The success of the handshake depends heavily on the sequence of events but
does not depend at all on the duration of any step. In our Black Jack Dealer, the
operator and Dealer must shake hands in the process of requesting and entering a
new card. HIT requests a new card; CARD.READY* is the operator's
acknowledgment of the request. The desired sequence is:

Chapter 6 Practicing Design

29

(1) Dealer senses that the (synchronized) CA RD .READY signal is false,
and asserts HI T , keeping H I T true at least until CA RD.READY goes
true.

(2) Operator sees the Hit light on, and (after preparing a new card) presses the
Card.Ready button, keeping it on at least until the Hit light goes off.

(3) Dealer detects that the (synchronized) CA RD.REA DY signal is true,
and drops HIT (and proceeds to process the new card), keeping H I T
false at least until CA RD.READY goes false.

(4) Operator sees the Hit light off, and releases the Card.Ready button,
keeping it released (and hands off the card switches) at least until the Hit
light goes on.

The Single-Pulser Revisited

What is wrong with our preliminary design? The operator's role appears correct
(we would, of course, fully describe the rules in the user's operating instructions).
The Dealer ASM performs step (1) properly, and most of step (3), but fails to
keep HI T false until it detects that the operator's button is released. Dealer is
failing to observe the dropping of the operator's hand. We can recast this
requirement by saying that Dealer must respond once and only once to each
action of the operator. Earlier in this chapter you studied several ways of
describing and handling this common phenomenon of "once and only once."
Here, let us express the solution yet another way. We incorporate the one-state
single-pulser algorithm (Fig. 6-3) directly into the ASM, so that we may add our
own specialized conditional outputs to the test branches. You have already seen
that we will have a CA RD .RDY .S YN C flip-flop in the architecture; to
accommodate the single-pulser we will include another flip-flop with output
CA RD .RDY .D ELAY ED. Then in the control algorithm, we explicitly test
the values of these two flip-flops in order to isolate one and only one recognition
of the operator's button push. The handshake signal HIT arises from a
conditional output whenever the pushbutton is up. The relevant part of this ASM
is in Fig. 6-24.

Figure 6-24. A specialized single-pulser for the Black Jack Dealer

This algorithm solves the difficulty of accomplishing the full handshake: HI T
will only be asserted in the Wait.For.Card branch of state GET. I f the button is
up, Dealer is happy to request a new card in state GET. Whenever GET detects
that the button is pressed, HI T will go false. The first time GET sees the button
pressed, the ASM will process a new card. If control returns to GET while the
button is still down, the algorithm simply waits (with HIT still false) until the
operator releases the button.

Chapter 6 Practicing Design

30

The Final ASM for the Black Jack Dealer

The algorithm for the Black Jack Dealer now seems to be developing nicely. We
have found that we may eliminate some of the states in our original proposal
without jeopardizing clarity. We have explored in detail the synchronization
requirements of certain inputs and the larger handshaking requirements between
the operator and Dealer. Figure 6-25 is the improved ASM for Dealer. In this
figure, as in Fig. 6-13, the labels on the conditional output boxes describe
conditional output terms—logic terms useful in developing a systematic
implementation o f a complex ASM. The conditional output terms are not state
names; they merely represent positions within their parent state. For instance, the

circled label on the conditional output in state GET is a shorthand for the
label GET.1. During the implementation of the control algorithm, we will derive
equations for the logic variable GET.1 as well as each of the other terms.

Figure 6-25. The final ASM for the Black Jack Dealer

The Final Architecture of the Black Jack Dealer

Figure 6-26 is the functional architecture of Dealer. Along the way, as we
developed a more detailed understanding of the problem, we made certain
modifications to the original architecture; these are reflected in the figure.

Chapter 6 Practicing Design

31

Figure 6-26. The functional architecture of the black jack dealer

The significant modifications or elaborations include the following:

a) Since the operating procedures stipulate that the card switches are
stable throughout the time that Dealer processes the card (in other
words, as long as HIT is false), we do not need a separate register to
hold the current card value; the card switches themselves will suffice.

b) The ASM manages the HIT signal directly, without a flip-flop to
preserve its value across states.

c) Our treatment of CARD.READY* introduces two new flip-flops, the
components of the single-pulser. We have elaborated on the black box
for preparing the input to the SCORE register. There are four
operations that modify SCORE: clearing SCORE to 0, adding CARD
to SCORE, adding +10 to SCORE, and subtracting +10 (adding -10)
from SCORE. A 5-bit adder can add the appropriate value to SCORE
if we can select the proper value. You know how to manage selection,
so you will probably guess that we will use multiplexers. The important
point to realize at this stage is that we can select one input from several,
without worrying about the exact library modules. With SCORE as
one input to the 5-bit adder and the other input selected by a selector
black box, the circuit is nearly specified. A judicious choice of the

Chapter 6 Practicing Design

32

modules for SCORE should allow us to clear this register separately
from the register-load operation. On this basis, the original nebulous
black box has separated into three components: an adder building
block, a selector building block, and a control input for clearing the
SCORE register building block.

Surely now we will sit down and define the exact modules to support the dealer
architecture. This would be a reasonable step to take at this time, but as a further
illustration o f the power of the methods you are learning, let's see how far we
can carry the implementation of the control algorithm without specifying the exact
hardware in the architecture.

Implementing the Control Algorithm

It is the task of the ASM to generate the necessary commands (outputs) to
control the architecture and to provide the outputs to the external world. In Fig.
6-27 we show how the ASM controls the architecture. The inputs and outputs of
the ASM are still specified at a somewhat abstract level. We will develop the
logic equations for each signal. Such a development depends on our
understanding of how to convert building blocks into logic primitives, just as
implementing a software flowchart requires knowledge of the programming
language. As we have stressed repeatedly, the goal is to think of the problem,
not the hardware, for as long as possible.

Figure 6-27. The functional control of the Black Jack Dealer

Our design now involves two tasks: Implementing the flow of the ASM (the
state generator), and implementing the outputs (commands). First, we will
define the conditional output terms, which will be useful parameters for many of
the remaining equations. Reading directly from the ASM, we have the following
logic equations.

!

GET.1= GET •CARD.RDY.SYNC

!

GET.2 = GET •CARD.RDY.DYNC•CARD.RDY.DELAYED

!

GET.3= GET.2• (STAND + BROKE)

!

TEST.1= TEST• SCORE > 16• SCORE > 21

Chapter 6 Practicing Design

33

!

TEST.2 = TEST•SCORE > 16•SCORE > 21•ACE11FLAG

= TEST•CORE > 21•ACE11FLAG

!

TEST.3= TEST• SCORE > 16• SCORE > 21• ACE11FLAG

= TEST• SCORE > 21• ACE11FLAG

Next, we implement the state generator. Table 6–3 is a summary of the ASM
state transitions.

TABLE 6-3 STATE TRANSITIONS IN THE BLACK JACK DEALER ASM
Present state Next state Condition from the ASM

GET GET

!

GET.2
 ADD

!

GET.2

ADD USE

!

ACECARD• ACE11FLAG
 TEST

!

ACCARD + ACE11FLAG

USE TEST T

TEST GET

!

TEST.3
 TEST

!

TEST.3

Notice the handy use of the conditional output terms. For example, the full
condition for moving from state GET to state ADD is

!

FROM.GET.TO.ADD = CARD.RDY.SYNC•CARD.RDY.DELAYED
But conditional output term GET.2 is just this expression ANDed with GET.
Producing the conditional output in the oval at position GET.2 will require that
we implement the conditional output term GET.2, so we know that this term is
available in the final circuit. Appending GET to the expression for
FROM.GET.TO.ADD has no logical effect, since the expression already
implies that the ASM is in state GET. It is therefore permissible, and convenient,
to use the conditional output terms as required to develop the state generator
logic.

As usual, it is convenient to decode the state flip-flop outputs, producing in this
case the four state terms GET, ADD, USE, and TEST. These terms complete
the requirements of the logic equations developed thus far.

As a last step in the ASM synthesis, we derive the output signals. Reading
almost directly from the ASM, we have:

Chapter 6 Practicing Design

34

HIT = GET.1
STAND(SET) = TEST.1
STAND(CLR) = GET.2

BROKE(SET) = TEST.2
BROKE(CLR) = GET.2
ACE11FLAG(SET_ = USE
ACE11FLAG(CLR) = GET.3 + TEST.3
SCORE(LD) = ADD + USE + TEST.3
SCORE(CLR = GET.3

Deriving the controls for the adder selector requires one further set of
parameters. We need 3 data inputs to the selector: CARD, +10, and −10. Each
data path is 5 bits wide, so five 4-input multiplexers will serve nicely as the
basis for this selector, each mux being controlled by the same select signals, S 1
and S0. We shall assign +10 as the input to the 0-position of the multiplexer −10
to the 1-position, and CARD to the 2-position. Our task is to derive logic
equations for the selector controls S1 and S0. With these specifications and the
ASM chart, we develop Table 6-4.

TABLE 6-4 ADDER INPUT SELECTION FOR BLACK JACK DEALER
Select inputs MUX

position S1 S0
Data inputs ASM notation ASM condition

0 0 0 +10 ADD10 USE
1 0 1 −10 SUB10 TEST.3
2 1 0 CARD ADDCARD ADD
3 1 1 — —

From this tabulation we easily derive the select input equations:
S1 = ADD
S2 = TEST.3

We now have equations for all the control signals, still without a commitment to
specific hardware. The last step, hopefully straightforward and bug-free, is to
select gates and flip flops, then draft the final circuit diagrams for the architecture,
state generator, and output signals. Here is the first point at which voltage enters
our design! Using mixed-logic drafting conventions, you can implement the
logic equations with whatever gates are handy. JK flip-flops are an obvious
choice for the storage elements for those signals requiring controlled setting and
clearing: STAND, BROKE, and ACE11FLAG.

This completes the Black Jack Dealer problem. The methodology is important
and well worth your close study and emulation using a simulator. The
documentation of this design should include most of the figures and tables
developed in this exercise that relate to the final design. Think what a help this
high-level documentation would be to you if you were presented with a real,
nonfunctioning circuit and told to get it running or to modify it in some way.

Chapter 6 Practicing Design

35

DESIGN EXAMPLE 6: A GARAGE DOOR OPENER

For our last design example we sketch the logic for a garage door opener and its
hardware implementation. Here the human interface is more important than the
hardware and we revisit this topic after discussing an implementation biased by
our exposure to conventional openers.

Conventional garage door openers have most of their logic concentrated in the
motor unit that receives commands by radio from a user keypad. Since we are
only interested in the overall logic of the complete system, we will adopt the
convenient fiction that all logic is located in the keypad which in turn issues
commands over wires to the motor unit. This allows us to abstract off the
irrelevant issues of radio communication and concentrate on system logic.

Since the overall architecture of a garage door system is an industry standard,
we can violate our dictum of algorithm first and architecture second, and show a
high level view of the system, with the proviso that a detailed consideration of
the algorithm may force some slight change in our preliminary architecture. In
this particular case this is not a disturbing inversion of procedure, but in general
you should be wary of thinking about implementation details before algorithm
design.

A keypad situated on the building’s exterior issues control signals to a motor
that raises and lowers the door. Mechanical limit switches sense when the door
is fully opened or closed. Keypad logic is an example of a module that is largely
architecture oriented and therefore relegated to appendix *. For the moment you
may assume a standard keyboard interface that reports a row and column
address on key depression, with key depression announced by an asynchronous
signal, DA*.

Figure 6-28. An Overview of the Garage Door System

Before even considering algorithm design we must make sure we understand the
overall problem. Try to write down all situations the algorithm must address
even if some of them are redundant; they are easily dealt with now but critical
design omissions are much harder to rectify when you are far down the design
path. Typical questions might be:

1) Should there be a master reset, if so, what should it do?

Chapter 6 Practicing Design

36

What will the doors state be after installation? Carpenters will do
whatever is convenient and will probably find it easier to install the
door in the closed state, but can we be sure of that? Maybe it was easier
for them to work with the door in the fully retracted state, or perhaps
in-between. When the keypad is installed and first powered up it can’t
assume anything about the door’s position. It seems natural that a
master reset should be present that will force the ASM into an initial
state that is responsible for driving the door into a full down condition
and then move into a quiescent ASM state waiting for some input.

2) What’s the controller’s quiescent state?

In the quiescent state we expect the user to press 4 digits to initiate a
door operation or perhaps initiate a new learn PIN sequence.
Provisionally, we might also use this state to clear out old PIN entries

3) How is the keypad interfaced with the ASM?
a) Digit keys
b) LEARN, DOOR, and RESET keys

Referring to figure GD-1, we will assume the digit keys 0-9 are
arranged in a 4x3 array and scanned with the keyboard algorithm
discussed in appendix *, which reports the row/column indices of a
depressed key. Row 002 is at the top and contains the “1,2,3” keys, row
112 contains the “0” key; column 002 contains the “1,4,7” keys and
column 102 contains the “3,6,9” keys. The asynchronous signal, DA*,
announces a key depression and availability of the corresponding 2-bit
row code and 2-bit column code. LEARN*, DOOR*, and RESET* will
be debounced asynchronous push button signals.

4) A sequence of 4 numeric key depressions that matches an internal stored
PIN, followed by the ENTER key, should actuate the door motor; but this
leaves some questions unanswered:
a) How do we get into the door actuate cycle in the first place?

The ENTER key will actuate the door after valid PIN entry

b) What happens if fewer than 4 digits are pressed followed by the
ENTER key?

This is obviously an error and should cause a branch to an error
handling portion of the ASM

c) What happens if more than 4 digits are entered followed by the ENTER
key?

We could treat this as an error, or alternately we could just accept
the last 4 digits, and if they match the master PIN, treat it as a
normal sequence. If they don’t match the master PIN, treat it as an
error. Let’s adopt the second alternative.

d) What happens if the correct PIN is entered, but left hanging when not
followed by the ENTRY key?

This is obviously an error and should cause a branch to an error
handling portion of the ASM

e) How does the controller know to signal up or down?

Chapter 6 Practicing Design

37

Alternate door sequences should reverse direction.
f) How does the controller know where the door is?
g) What constitutes an error condition?
h) What should the system do on an error?

5) The system must be able to learn a new PIN. Many of the same questions
need to be addressed
d) How does the system prevent an unauthorized user from setting his

own PIN?
A user must first match the reference pin before being allowed to
advance to the LEARN sequence

e) What sequence of keystrokes leads to the learn portion of the ASM?
f) How does the system signal success in learning a new PIN
g) What constitutes an error condition?
h) What should the system do on an error?

6) And lastly the “chicken and egg problem”. What happens the very first time
a user tries to generate a new PIN?

On installation there must be a pre-assigned PIN otherwise a new user
would never be able to store a new private PIN. So the manufacturer
must load a standard PIN, say 0123, into the PIN EEPROM memory,
with instructions to a new user to immediately change it to a new
personal PIN.

We invite you look at your own door opener and see how it address these
questions as well as looking for missing conditions that must be incorporated
into your ASM. For now, we will assume this is a complete list. As a
preliminary step, let’s formulate the problem as a standard flow chart. This gives
us a good overview of the complete problem and results in sub task partitions,
something that comes naturally to good algorithm designers.

Figure 6-29. A high level view of the garage door algorithm, (not an ASM).

We can now begin to expand these high level operations into architecture and
algorithm, (ASM states). Even before casting the algorithm into an ASM the
software flowchart points to probable architectural elements. The reference PIN
must maintain its value until changed by a new LEARN PIN sequence;
EEPROM is a natural candidate for reference pin storage.

Each operation requires entry of a temporary PIN to validate a user and once
compared against the reference pin it can be discarded. A number of possibilities

Chapter 6 Practicing Design

38

fit these requirements: flip flops, RAM, or a shift register. At this stage our
algorithm is insensitive to our choice but we know that it must be temporary
storage, capable of holding 4, 4-bit numbers, and be able to report when less
than 4 numbers have been entered. Even at this early stage our problem
formulation points to an architecture to handle this problem. Two solutions
come to mind: a 4x4 RAM or a 4x4 shift register. Since we have chosen to
accept only the last 4 entries of an entry sequence the shift register solution
seems natural since a 4-bit register will only retain the last 4. The addition of a
5th bit is a clever way to flag the case of less than 4 entries as shown in Fig. 6-
30. If we first clear all register bits, a “0” will appear at the lower right “Q”
terminal if less than 4 keypad codes have been entered. Note that we came to
this solution after considering the algorithm, not before.

Figure 6-30. Temporary PIN storage architecture

Lets start by considering ASM’s for likely fragments of our final algorithm,
starting with the initialize fragment:

Figure 6-31. Initialize ASM

We should shift in a new KEY code for every assertion of DA*, making sure to
synchronize DA* and run it through a single-pulser to give DA(SP), something
you should automatically do when processing slow manual signals on a fast state
machine. Entries will happen repeatedly until terminated by LEARN* or
DOOR* signals, which should also be synchronized and single-pulsed.

Chapter 6 Practicing Design

39

Figure 6-32. Enter New Pin ASM

Equality checking can be done “in line” with 4 states or in one state with an
auxiliary loop counter. We leave the loop version as an exercise and present the
in line version.

Figure 6-33. Valid PIN ASM

Looking at the LEARN portion of Figure 6-35 we see that the architecture of 6-
30 will also serve for entry of a new PIN for storage in the reference EEPROM,
with one minor difference; we must now check for exactly 4 entries. Adding a 1-
bit shift register to the 5th row detects this condition.

!

Exactly 4 entries = (< 4)•(< 5)

Figure 6-34. Modified 6-30 To detect 4 entry condition

Chapter 6 Practicing Design

40

We now have a good feel for partial ASM components so lets try to put them
together into a provisional, complete, ASM. This will give us the opportunity to
view the problem as a whole; hopefully there will be no flaws. A possible final
ASM is shown in Figure 6-35.

Figure 6-35. Garage Door ASM (with an error)

Unfortunately, we have been premature and consideration of the ASM reveals a
subtle flaw. The algorithm for entering keystrokes into the temporary PIN shift
register is straightforward. Enter data, once, on every assertion of DA*, this
warns us that we must single pulse DA* to give DA(SP), well and good; the
entry process is terminated by depression of either the LEARN* or DOOR*
keys and again they must be single pulsed, and the ASM correctly handles that.
We now have a PIN loaded and must check it for a match to the reference PIN,
again, this is correctly handled by the ASM.

Chapter 6 Practicing Design

41

After verifying that we have matched our entered PIN against the reference PIN
we must either do a DOOR cycle or a LEARN cycle, but both DOOR(SP), and
LEARN(SP) have gone away! (This assumes we are using our standard single
pulser module that outputs a one-clock cycle pulse at the beginning of a key
depression).

We no longer know which way to go. Ahh, but our finger is much slower than
our ASM clock so DOOR* is still asserted and we could safely use a
synchronized version, DOOR, to at least tell us to actuate a DOOR cycle as
follows:

Figure 6-36. A fix(?) to the Garage Door ASM

Do you have a bad taste in your mouth? You should! Why? We are using
hardware to rescue a bad ASM, even worse, it’s an obscure hardware trick. Any
logical difficulties should be resolved at the algorithm level where they are
exposed for all to see. We are faced with a standard problem: recovering
knowledge of a past event. Every algorithm designer has a standard approach to
this problem: set a flag, and later query the flag. Of course, we must also
properly handle that flag during initialization.

Figure 6-37. Properly handling prior ASM events.

The Garage Door Opener Revisited.

This presentation was inevitably biased by what we already know about garage
door openers, and more subtly by our own technophile’s viewpoint. If you can,
try to put yourself in the position of introducing the very first opener to the
waiting world. You must now look at the entire problem from a technophobe’s
viewpoint, usually a difficult thing for an engineer. A good way to proceed
would be to write a simulation, in a high level language, that portrays the keypad
on a touch sensitive CRT with a visual door image on the same screen. Then

Chapter 6 Practicing Design

42

invite a selection of technophobes to play with the simulation until you find a
keypad layout and key sequence that is as intuitive as possible. No doubt you
would find that our keypad layout and algorithm of Figures 6-28 and 6-29 would
be slightly altered; technophobes don’t think like engineers! That’s not
important; engineers will not be your customer base.

Think about you VCR remote and you will see that many designs simply
bypassed this obvious first step. Hardware can’t be elegant unless the human
interface is intuitive!

READINGS AND SOURCES

EXERCISES
6-1. Show that any ASM may be expressed as an ASM with only one state.

Why do we not do away with state generators by always designing with
single-state ASMs? Discuss the advantages and disadvantages of this
approach.

6-2. Although we find that we must debounce manual control switches, we
usually do not need to debounce manual data entry switches. Why?

6-3. Build a four-state ASM that emits one of two BCD number
sequences, depending on the value of a control variable
NINESCOMP. Each sequence has a cycle of four digits:

When NINESCOMP = F, the sequence is 0, 1, 2, 3, 0, 1,
When NINESCOMP = T, the sequence is 9, 8, 7, 6, 9, 8,

6-4. Exercises 1–36 and 2–32 deal with the seven-segment numeric display.
Assume that the display integrated circuit requires discrete signals for
each segment a through g. Build a four-state ASM to repeatedly
display the first four prime numbers in proper sequence: 2, 3, 5, 7, 2,
3, 5,

6-5. Using a 60-Hz periodic logic signal, produce a signal that can serve as a
1-Hz clock.

6-6. If your simulator has 7-segment modules, design the two-digit "second"
display of a digital clock. The clock must cycle continuously from 00
through 59, except when a signal from a pushbutton forces the display to
00. Assume that a 1-Hz synchronous clock signal is available.

6-7. Extend the previous exercise to produce a full 24-hour clock display.
How will you set the correct time? (Hin t: Commercial digital clock
units often provide a speed-up mode, in which the displayed time goes
through a complete cycle in less than 1 minute.)

6-8. Add an alarm feature to the digital clock.

6-9. Design an implementation of Fig. 6–1 using the formal one-hot method
with no simplifications. Show how this implementation may be
rigorously transformed into the circuit of Fig. 6–2.

6-10. Add a blinking-light feature to the traffic-light controller in

Chapter 6 Practicing Design

43

Design Example 5. Assume that a new BLINK signal is available
and that, when BLINK is asserted, the highway lights blink yellow
and the farm-road lights blink red.

6-11. Finish the detailed design of the garage in Design Example 6. Produce
circuit diagrams suitable for actual construction of the door's electronics.

6-12. Complete the detailed design of the Black Jack Dealer of Design
Example 5. Produce circuit diagrams suitable for construction of the
electronics.

6-13. For the Black Jack Dealer, the initial ASM in Fig. 6–26 required a flip-
flop for the output HIT. Show how the further development of the
control algorithm led to the elimination of the HIT flip-flop from the
architecture. This is a typical example of the algorithm modifying the
architecture.

6-14. In Fig. 6–22, state variables C, B, and A are all involved in transition
races. Why is state variable D not similarly involved?

6-15. Binary patterns that differ in exactly 1 bit are said to be a unit distance
apart. Consider an ASM state (the "predecessor") that has branch paths to
several "successor" states. (Note that one possible successor is the
predecessor state itself.

a) If all successor states have encoded state assignments at most a unit
distance from the predecessor, show that no transition races will arise,
even if asynchronous test inputs are present in the predecessor state.

b) Show that the condition in part (a) is not sufficient to preclude output
races.

6-16. In the Black Jack Dealer, the architecture contains black boxes that
produce such signals as ACECARD, SCOREGTI6, and
SCOREGT21 . For example, see Fig. 6-26. These black boxes involve
only simple combinational circuits. Why do we choose to use the black
boxes during the design process, instead of showing the circuits directly?

6-17. The ASM for the Black Jack Dealer (Fig. 6–25) tests several signals
(ACECARD, SCOREGTI6, SCOREGT21) that are generated by
combinational logic within architectural black boxes. Since these black
boxes are not clocked, how do we know that their outputs are
synchronous and therefore suitable for testing in the ASM?

6-18. Define carefully the use of a full handshake to synchronize two
independent processes. Show how the need for process synchronization
arises whenever a human operator interacts with a machine. Illustrate
these concepts with the Black Jack Dealer.

6-19. T o synchronize events in two cooperating but independent processes,
designers have used a variety of techniques, many of which we may
describe as "incomplete handshakes." For instance, consider the
following incomplete handshake:

a) Device A requests an action (device A extends its hand).

Chapter 6 Practicing Design

44

b) Device B senses the request and acknowledges receipt of the request
(device B extends its hand).

c) Device A senses device B's acknowledgment and drops its request
(device A drops its hand).

d) Device B drops its acknowledgment at any time after asserting its
acknowledgment (device B drops its hand).

This looks like a "complete" handshake, but there are circumstances in which
the handshake may be incomplete. Draw timing diagrams for the possible
behaviors of the request and acknowledge signals. Discuss the effectiveness of
the above protocol for the following conditions:

i) Device A is a machine; device B is a human being.

ii) Device A is a human being; device B is a machine.

iii) Both devices are machines.

iv) Both devices are human beings.

6-20. Implement a one-hot state generator for the Black Jack Dealer.

6-21. In the Black Jack Dealer example, the signals SCOREGT16 and
SCOREGT21 arise from a comparator architectural element. Write logic
equations for these two variables. Show by Boolean algebraic
manipulation that the term SCOREGT16•SCOREGT21 reduces to
SCOREGT2I, thus rigorously demonstrating the validity of the
simplifications of TEST.2 and TEST.3 performed "by observation" in
the text.

6-22. Design a synchronous digital circuit with the following properties:
 Inputs:

a) Two 4-bit binary numbers, A and B, in signed magnitude notation (1
sign bit, 3 magnitude bits).

b) A GO signal from a manual pushbutton.

 Outputs:
a) A 4-bit binary number C in signed magnitude notation.

b) A signal EVEN for a display lamp.

 Task:
a) Wait for the GO signal to be asserted.

b) When GO appears, clear the signal EVEN to false, and load the values
on the input lines A and B into two 4-bit registers RA and RB.
[Hereafter, (RA) means "contents of RA," etc.]

c) Then, produce an output C in register RC, as follows:

 If (RA) > (RB), then transfer the quotient of (RA)/2 to RC.

 If (RA) ≤ (RB), then transfer (RB) to RC.

d) If (RA) > (RB) and the remainder of (RA)/2 is 0, then assert EVEN;

Chapter 6 Practicing Design

45

otherwise, EVEN remains false.

e) Return to step (a) to await another GO signal.

6-23. Construct an ASM that will turn on a light as the first person enters a
room, and turn off the light as the last person leaves. Assume that there is
a single door fitted with two photocells that generate suitable voltage
outputs. One photocell is on the inner side of the door and the other is on
the outer side. Light beams shine on each photocell, producing a false
output from the cell; a true output from a photocell arises when the light
beam is interrupted. Assume that once a person starts through the door,
the process is completed, and that only one person enters or leaves at a
time.

6-24. Design a versatile timer circuit. The circuit has two input codes:

a) A 3-bit code describing the unit of counting: code 0 = 100 nsec, code 1
= 1 µsec, code 2 = 10 µsec, ... , code 7 = 1 sec.

b) An 8-bit code describing the number of counts.

Asserting an input signal START will cause the timer to begin counting the
specified number of counts, each count being of the specified duration.
The only output from the timer is a signal TIMESUP, which becomes
false when timing begins and becomes true when the specified interval
has elapsed. The timer can time an interval from 100 nsec to 255 sec.
Use a 100-nsec clock to drive the timer. Use good synchronous design
techniques in determining how to clock and advance the decade
counters.

6-25. The stack is a software data structure often implemented in hardware. A
stack is an ordered set of elements analogous to a stack of plates in a
cafeteria. Only the top element (plate) is accessible. Removal of the top
element exposes the next-to-top element, which then becomes the top.
Addition of an element to the stack causes the former top element to
become next-to-top; the added element becomes the top. The operation of
adding an element to a stack is called p u sh . The removal operation is
called p o p . These are the only allowed stack operations. A stack is
sometimes called a LIFO (last in, first out) memory. In hardware, we
may implement a stack in RAM or with an array of discrete registers.

a) Using RAM, design a stack that accepts push and pop operations and
properly adds or removes an element from the top of the stack.

b) Design a small five-element stack using registers.

6-26. Repeat Exercise 6–25 for a stack that also provides two status signals:

EMPTY: Asserted when the stack contains no elements. Your stack
should ignore a command to pop an empty stack.

FULL: Asserted when the stack contains a predetermined maximum
number of elements. Your stack should ignore an attempt to push a full
stack.

6-27. The queue is a software data structure that is sometimes implemented

Chapter 6 Practicing Design

46

in hardware. The queue has a front and a rear, like a line for tickets at a
theater. A write operation adds an element to the rear of the queue; a
read operation removes the element at the front of the queue. No other
operations are allowed. The queue is also called a FIFO (first in, first
out) memory. A queue has two status indicators:

EMPTY: Asserted when the queue contains no elements. The circuit
should ignore an attempt to read an empty queue.

FULL: Asserted when the last available memory location is occupied
with a queue element. The circuit should ignore an attempt to write into a
full queue.

(a) One approach to implementing a queue in RAM is to maintain two
pointers FRONT and REAR as RAM addresses to the extremities of the
queue. WRITE increments REAR and adds an element to the rear of the
queue; READ extracts the front queue element and increments FRONT.
FULL becomes true when REAR points to the highest memory location
in the RAM. Design such a queue. You may alter the foregoing
suggestions as long as you still implement a queue.

Why is this project more difficult than designing the stack of Exercises
6–25 and 6–26? In this implementation, when FULL is true, is all of the
memory filled with queue elements? If EMPTY is true, what should be
the values of FRONT and REAR?

(b) Another approach to a RAM implementation of a queue is similar to
that in part (a) but allows the queue to go "around the corner," so that
REAR and FRONT may advance from the highest memory address to
address zero. Design such a queue. When does FULL become true?

6-28. Design a controller for an elevator in a six-story building. Your
controller must respond to call switches on each floor and floor-select
switches within the car.

6-29. Design a four-way traffic-light controller that will keep traffic moving
efficiently along two busy streets that intersect. In this exercise,
consider only straight-through traffic.

6-30. Extend Exercise 6–29 to include left-turn signals at each approach to the
intersection.

6-31. Extend Exercise 6–29 to include pedestrian crosswalk signals.

