
Ch 7 

Designing a Minicomputer 
You are ready to tackle a really substantial project to round out your study of hardwired design. 
Nothing will sharpen your design skills more than wading through the design of a complex 
project from start to finish. Thus far, you have studied pieces of the design process; in the next 
three chapters we will help you forge your knowledge into an integrated and workable design 
tool. What project should we choose? Such an undertaking should be detailed yet elegant, large 
yet not too large. Let's design a computer!  

Immediately we are faced with dillemas, some unexpected. What to build? Surely a modern 
processor embodying cuurent architectural concepts is a prime candidate, or is it? We desire a 
project simple enough to be completed in an elementary course, a serious constraint which rules 
out likely candidates, in fact all current CPU’s. This is unfortunate but we have not found a way 
around it.  

Further, all modern processors are meant to be thrown away when defective whereas ancient 
computers were expensive and intended for field repair with tools called diagnostic programs to 
assist field engineers in detecting indivdual failed components for replacement. Diagnostics are 
an indispensible tool as you build and test your system and trying to build even a simple project 
without their support borders on cruel and unusual punishment. This immediately takes us back to 
old times when  these tools were commonplace and an integral part of any computer installation. 

This is not necessisarily a show stopper, back up for a minute and reflect on this book’s subtitle, 
“Algorithms in Silicon”; computers are simply a common target for hardware implementation and 
we are interested in the process, the target is secondary so let’s pick the simplest one we can find. 

The exposition in this chapter is not a mere “paper design”; real working hardware has been built 
following the design path outlined here. We strongly encourage you to follow through and build it 
either on a FPGA or on a simulator as outlined in one of the appendices; there is no better way of 
solidfying design concepts than putting them to work and verifying your construction. 

Our aim is to design an entire operational, real, computer system, taking no shortcuts, leaving 
nothing out. Toy computers can be simple but less satisfying. Immediately we are faced with a 
conflicting set of requirements. Most computers, even the smallest microcomputers, are highly 
complex structures—too complex to be a suitable teaching illustration at the gate level of design. 
Instead, we choose the first minicomputer, the Digital Equipment Corporation PDP-8. 

The PDP-8 has had a successful history. More than 50,000 units have been installed, some of 
which are still in use. The PDP-8 also has an extensive library of software and is a good machine 
for illustrating device interfacing. 

The great advantage of the PDP-8 for our purpose is that it has a simple structure with only eight 
basic instructions. It exists in several models; each executes the same basic set of instructions, 
but they differ in minor ways. We will use the PDP-8I as the basis for our exercise. We will 
develop our design from first principles and make no reference to the Digital Equipment 
Corporation's design. The result will be functionally equivalent to the PDP-8I—for example, it 
will run PDP-8I software—but we will use top-down design techniques. The only detailed 
information we need about the PDP-8I is a description of the action of each instruction.  

Let us list the pro’s and con’s of the PDP-8 as our first project: 

Pro’s 
It is a real computer 
It has a dirt simple data path 



Its instruction set is simple yet powerful enough for real programming 
There is a complete suite of diagnostic programs so you can test your simulated machine 
There is an amazing library of programs, chess, LISP,  an interpreter similar to BASIC, and a host 
of other applications (including multi user time sharing, all in a 4k memory!) 
There are several PDP-8simulators  on the internet with a complete set of utilities, assemblers, etc. 
Some are so good they give the illusion you are running on a real PDP-8  
It is a historically important machine 
It is simple enough for a first time student to simulate on any of a number of cheap commercial 
simulators 

Con’s 
It is a historically important machine, but now extinct 
It is a dirt simple computer without many of the bells and whistles of modern machines. In spite of 
its overall simplicity it does have a rather involvrd fetch cycle. 
Its addressing modes are severely constrained by its 12-bit word length. This forces some rather 
quaint (ugly?) modes that modern computers  bypass with their wider word lengths. 
Modern features like stacks, varied indexing modes, register files, vectored interrupts, pipelining, 
memory hierarchy, and protection schemes are absent. 

In our experience there is only one machine suitable for a first introduction, the PDP-8. Later we will go 
through the same process for a thoroughly modern computer and the more adventuresome may wish to skip 
the PDP-8.  However, it has been our experience that a beginner can do both machines in sequence in less 
time than skipping the ‘8 and starting off with the more complex example. The statement of the problem is 
brief: build a computer that will execute the PDP-8I instruction set. 

PART 1 
PDP-81 S PE C I FI C A TI ON S  a n d  IN S TR U C TI O N  S E T 

The first step is the obvious one of studying the PDP-8I to see what we must emulate. The major 
characteristics of the PDP-8I are: 

(a) A 12-bit word size. This is quite small and will cause memory-addressing limitations. I f  a memory 
word is used to hold an address, it can refer to only 4096 (2

12
) different locations. Therefore, the 

standard PDP-8 is limited to 4096 words of addressable memory. 

(b) A single accumulator. Several instructions refer to an accumulator (AC), used to store intermediate 
results for later manipulation. Having only one accessible register forces a programmer to use care in 
saving and restoring vital data in the AC, for example upon subroutine entry and exit. Many 
computers use register files, which can speed the execution of programs but which expose the 
programmer to subtle bugs if the data in all registers is not properly handled. In many applications 
the single AC is a blessing! 

(c) A 3-bit operation code. Each instruction occupies a 12-bit word, of which 3 bits are devoted to the 
operation code. This provides eight basic commands—an adequate but hardly abundant number. 
Only 9 bits remain in the instruction for such purposes as addressing memory, whereas the 4096-
word memory requires a full 12-bit address. 

(d) Paging. Addressing limitations in minicomputers and microcomputers have forced computer 
architects to find a number of ingenious solutions. The PDP-8's method is based on memory pages of 
128 (27) words. The 4096-word address space is divided into 32 pages, and each memory-referencing 
instruction has 7 bits to address a word within a page. The missing 5 bits of the address are not a part 
of the instruction, but are derived implicitly from the context. Without some trick of this sort there 
would be no way to pack a 3-bit command and an address into a 12-bit word. Maneuvers such as this 
were common features of early minicomputers. The paging mechanism of the PDP-8 is perhaps the 
simplest technique and serves as a foundation for studying more complicated schemes used in other 



computers. 

Throughout this design exercise, we will use the octal numbering system to specify particular values of the 
PDP-8's instructions, addresses, and so on. 

Any such numbers not in octal will have an explicitly designated base. Thus 305 is 305 octal, 10112 is 1011 
binary, and 4210 is 42 decimal. 

PDP-8I Instructions 

All computers go through a fetch-execute sequence. It is the function of fetch to get and decode 
instructions and prepare operands for the execute cycle. This may be simple or complex depending on the 
instruction's addressing mode, but at the end of fetch either an address, the EA (Effective Address), or an 
operand, the EO (Effective Operand) will be presented to the execute apparatus for processing by the 
instruction that was decoded during fetch. 

Branches, or jumps, only need an EA, the target location where the jump tells the CPU to find its next 
instruction. Data operations, such as an ADD, on the other hand require a value, the EO. For example an 
add instruction will add the EO to a memory location, register, or accumulator.  

Splitting the computer into fetch and execute sections is an example of divide and conquer, a powerful tool 
for managing complexity. Divide a complex task into smaller units that can be easily understood and 
debugged, then assemble the subunits into a finished product; a paradigm used in both software and 
hardware. After fetch, execute will have the data it needs without needing to know how fetch got it, and 
similarly, fetch can go about its business of getting instructions and operands without knowing how the 
execute apparatus will process them 

An instruction set characterizes a computer, and therefore we must carefully study the PDP-8I's 
instructions. The effective address EA points to a memory location whose contents are the EO, the 
effective operand. EA and EO notations allow a compact description of  memony-referencing instructions. 
A compact notation for Memory addressed by EA is MEM(EA), thus EO=MEM(EA)  

AND (Twelve-bit logical AND).   Operation code 0002 = 08.  

A C•EO   A C 

This is a bit-by-bit AND of the AC with the effective address contents. For example, 

AC = 001  101  111  0002  
EO = 110  111  101  1002 
A C•EO  = 000  101  101  0002 

The value of AC•EO replaces the old contents of the AC. 

TAD (Two's-complement add). Operation code 0012 = 18 
AC(+)EO AC 

The addition is performed in the two's-complement mode; that is, the instruction implies that the 
numbers are 12-bit signed quantities represented in the two's-complement notation. I f  carry out 
occurs, the CPU toggles (complements) a special flag called the link bit (LINK). 

ISZ (Increment and skip if 0). ).   Operation code 0102 = 28 

EO (+) 1  MEM(EA)     if EO (+) 1 = 0  then skip the next instruction 
                  else execute the next instruction 

This instruction is useful in controlling loop execution.  

DCA (Deposit and clear AC). Operation code 0112 = 38  

AC MEM(EA); then 0  AC 
The contents of the AC goes into the specified memory location, then the AC is set to 0. 



JMP (Jump). Operation code 1012 = 58 

Jump to location with address EA for the next instruction. 

JMS (Jump to subroutine Operation code 1002 = 48  

Store the address of the word following the JMS instruction (i.e., the return location) in the 
memory word with address EA. Then jump to the location with address EA (+) 1 for the next 
instruction. 

The return location is the word after the JMS instruction. This instruction stores the return address 
in the first word of the subroutine and then jumps to the second word, which must contain the 
starting instruction for the subroutine. The normal entry to a subroutine X is thus with a JMS X, 
which saves the return address in location X. The normal exit from the subroutine is with a JMP 
*X (indirect jump through location X). 

OP (Operate). Operation code 1112 = 78.  
This is by far the most complex command in the PDP-8. It does not reference memory, so the 
address field bits are available for other purposes. The Operate instruction permits the following 
basic actions: 

Clear accumulator:  0  AC 

Clear link bit:  0  L I N K   

Complement accumulator:   

! 

AC   AC 

Complement link bit:  

! 

LINK  L I N K  
Increment accumulator:  AC (+) 1 AC 
Rotate the concatenated accumulator and link bit right or left, 1 or 2 bit positions. 
OR console switches with  AC SR + ACAC 

Skip on various conditions of the accumulator or link bit. 

Halt the computer. 

Each of these operations is controlled by 1 or more bits in the address field o f  the instruction. These are 
sometimes called microcoded instructions on microinstructions. The programmer may invoke 
combinations of these microinstructions within one Operate instruction. There is a huge number of possible 
combinations; about 20 of these are useful to the programmer. These combinations of microinstructions ease 
the pinch of having only eight basic instructions in the PDP-8. 
The operation code 1112 occupies bits 11 through 9, as usual. Instruction bits 8 through 0 have individual 
functions. The Operate instruction on the PDP-8I is split into two groups, group 1 (G1) and group 2 (G2). 
Bit 8 specifies the group: in group 1, bit 8 = 0; in group 2, bit 8 = 1 

The format for group 1 is 

11 10 9 8 7 6 5 4 3 2 1 0 
1 1 1 0 CLA CLL CMA CML RAR RAL Rotate twice IAC 

Operate Group 1         

The meaning of the microcode bits in GI is 

Bit Mnemonic Name 
7 CLA Clear accumulator 
6 CLL Clear link 
5 CMA Complement accumulator 
4 CML Complement link 
3 RAR Rotate accumulator and link right 
2 RAL Rotate accumulator and link left 
1 ---- 0=one bit rotation; 1=2-bit rotation 



0 IAC Increment accumulator 

The format for group 2 is 

11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 1 CLA SMA SZA SNL Skip 
sense OSR HLT 0 

Operate Group 2         

The meaning of the microcode bits in G2 is 
Bit Mnemonic Name 
7 CLA Clear accumulator 
6 SMA Skip on minus accumulator 
5 SZA Skip on zero accumulator 
4 SNL Skip on nonzero link 
3 Skip sense (specifies sense of skips; see discussion) 
2 OSR OR switch register into accumulator 
1 HLT Halt the computer 

(In group 2 micro-operations, bit 0 is 0. On the PDP-8I, the condition of bit 0 is irrelevant, but some other 
models of the PDP-8 computer have another set of microinstructions, group 3, identified by bits 8 and 0, 
both of which are set to 1.) 

To find the exact result of combining microinstructions, we must define the sequence in which the 
operations of each group occur. The PDP-8 describes the sequence in terms of priorities. There are four 
priority levels, I through 4: priority 1 operations occur before priority 2, and so on. The priority sequences 
of the micro-operations of G 1 and G2 are: 

Priority Group 1 Group 2 
1 CLA  CLL Skips 
2 CMA  CML CLA 
3 IAC OSR  HLT 
4 Rotates  

The group 2 "skip" microinstructions require further explanation. There are three conditions for skipping: 
SMA, SZA, and SNL. Bit 8 determines the skip mode. The operations are as follows: 

If (bit 8 = 0) then a skip occurs if any of the chosen conditions is satisfied 
     else no skip occurs. 

I f  (bit 8 = 1) then  no skip occurs if any of the chosen conditions is satisfied 
      else a skip occurs. 

IOT (input-output transfer). Operation code 1102 = 68  The PDP-8 has a primitive but adequate facility 
for the input and output of data. We will discuss the IOT instruction more thoroughly later; but now we will 
note how data enters and leaves the computer. Outgoing data (from the PDP-8 to the external world) comes 
from the AC. Incoming data reaches the AC by being ORed with the existing contents of the AC. There is a 
programmable facility for clearing the AC prior to accepting incoming data. Thus the basic input operations 
are 

0  AC  (optional) 
Input .Data + AC  AC 

The IOT instruction also permits the programmer to enable and disable the PDP-8's interrupt system. These 
IOT subcommands are ION (Interrupt System On) and IOF (Interrupt System Off), and have instruction bit 
patterns 60018 and 60028, respectively. The presence of interrupt commands alerts us to the need to 
investigate the interrupt mechanism. 

Interrupts. (Voltage driven subroutine calls) 

The PDP-8 specification requires that the machine be able to sense the presence of an external interrupt 



request. This request originates in some peripheral device and means that the device wishes to report an event 
of interest to the computer program. Any number of devices can request interrupt processing through this one 
external interrupt request line. When the PDP-8's interrupt system is activated, the computer monitors the 
interrupt request signal to see if any device needs servicing. I f  so, then at an appropriate time in the normal 
instruction processing cycle, the PDP-8 will force an automatic subroutine jump (JMS) to a fixed memory 
location (cell 0000). It is the programmer's responsibility to see that a valid subprogram for processing 
interrupts begins at location 0000. This subroutine is responsible for reading data from the peripheral device, 
writing data, or perhaps placing control information into the device. The characteristics o f  the device 
generating the interrupt determine what the interrupt subprogram must do. Therefore, the interrupt 
subprogram must determine which device is responsible for the interrupt and then perform actions tailored to 
that device. After servicing the interrupt, the subprogram will make a normal subroutine return through cell 
0000 and processing of regular instructions will resume. 

Interrupt requests originate from external devices running at their own pace, and may interrupt the program at 
any time. This is both a blessing and a curse to the programmer. Interrupt requests can occur whenever a 
peripheral device decides it needs service from the main computer. This is a potent programming tool, since 
the computer program need not waste time continually checking its peripheral devices to see if one needs 
service. 

Interrupts are powerful; they are also tricky. The difficulty arises because interrupt requests originate from 
external devices and are therefore not reproducible. An interrupt may occur when the resident computer 
program is not prepared to handle it. For instance, suppose that the programmer has not established an 
interrupt service routine beginning at memory location 0000. Then the program will not run correctly if the 
computer recognizes an interrupt and jumps to location 0000. Even if the interrupt service program is 
present, it may not properly treat all the interrupt requests that may arise. These problems are difficult to 
diagnose, since the debugger of the program cannot reproduce the exact sequence of instructions that led to 
the difficulty. Interrupt programming requires much more foresight and care than conventional 
programming. 

To allow more control over this difficult programming task, computers with interrupts always allow the 
programmer to enable (turn on) and disable (turn off) the computer's interrupt detection apparatus. The 
programmer may select those times when interrupt requests may result in the interruption of the program. 
Some computers permit the handling of several types of interrupts, each type having its own interrupt jump 
location. We will not pursue this subject, because our focus is on the PDP-8's interrupt capabilities. 

The PDP-8 programmer may enable or disable the recognition of interrupts by using the ION (Interrupt 
System On) and IOF (Interrupt System Off) sub-commands of the IOT instruction. The PDP-8's hardware 
will automatically disable the interrupt system whenever an interrupt causes a jump to location 0000. This 
action is needed to give the programmer's interrupt service routine enough time to react to one interrupt 
without the danger of another interrupt occurring in the middle of the processing of the first interrupt. It is the 
programmer's responsibility to enable the interrupt system again at the proper time, to permit the detection 
of further interrupts. This gives rise to a subtle problem. The interrupt subroutine will normally leave the 
interrupt system disabled until it is time to return to the main (interrupted) program. At this time the 
interrupt subprogram must enable the interrupt system and return. The last two instructions of the subprogram 
are: 

--. 
--. 
--. 

ION  (Turn on interrupt system) 
JMP *0 (Indirect jump to point of interruption) 

We must make sure that we can execute the return jump to get back to the main program. Consider what 
would happen if an interrupt request is pending at the time the ION command is executed. The ION would 
re-enable the interrupt system and the computer would immediately jump again to location 0000 without 
executing the jump instruction after the ION. The interrupt-forced JMS 0 causes cell 0000 to receive the 
address of the point of interruption—the address following the ION in this example. This act destroys the 
old return address in location 0000 which the unexecuted JMP *0 instruction wanted to use. The PDP-8's 
solution to this dilemma is to inhibit the recognition of interrupt requests for one instruction following an 



ION command, thus allowing the program the time to execute the crucial JMP *0 to return to the 
interrupted program before the computer recognizes any additional interrupt requests. Interrupts are a 
complex feature of computers, and they place a heavy responsibility on the programmer. Whether or not 
the programmer does the job correctly, the computer must faithfully perform its assigned duty of detecting 
interrupt requests and forcing subroutine jumps to location 0000 whenever the interrupt system is enabled. 

PDP-8 Memory Addressing 

In many memory addressing schemes for small instructions, the location of the current instruction is used to 
specify part of the operand address. For example, assume a program with five instructions stored 
sequentially, starting at location 300. Call these instructions CM0 (command 0) through CM4 (command 
4). A memory map of this program would be: 

Location Contents 
300 CM0 
301 CM1 
302 CM2 
303 CM3 
304 CM4 

I f  instruction CM3 is being executed, we know that it is located at address 303, since that is where we 
placed it. Instruction CM3 can employ a subset of the 12 bits in its word to reference data located close to 
location 303. In the PDP-8, "close to "  means in the same page. 

The PDP-8 splits 4096 words of memory into 32 pages of 128 words each, as shown in Fig. 7-1. Instruction 
CM3 is in page 1; 7 bits are sufficient for that instruction to access any word in that page. 

Page 0 0-177 
Page 1 200-377 
Page2 400-577 
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. 
 

All address are octal 
Each page contains 

2
7
=12810=2008 words 

 

Page 3110 7600-7777 Figure 7-1 Page structure of PDP8 memory 

 

We now have a mechanism such that an instruction needs only 7 bits to access a memory cell in one 
particular page. Let us call these 7 bits the page offset, and let the page offset occupy the rightmost 7 bits 
of a PDP-8 instruction: 

Op code 
3 bits 

Uncommitted 
2 bits 

Page offset 
7 bits 

Suppose location 301 contains the 12 bits 001 XY1 000 1012, (for the moment we will ignore the 2 bits X and 
Y). The operation code is 0012, which means an addition o f  the AC and the contents of a memory location. 
Which location? The 7 page-offset bits are 1 000 1012 = 1058. The instruction is to add the contents of 
location 105 in this page (the page containing the add instruction) to the accumulator. We know that the 
instruction is at location 301, and since the instruction is in page 1, the page offset is referring to page 1. Thus 
we will get the contents of word 105 in page 1 and add it to the AC. 

What if instructions in different pages require the same data? It would be nice if some common page could be 
accessed by instructions in any page. In the PDP-8, page 0 has this function. We have two precious unused 
bits in the instruction, and we need one of them to tell if we want word 105 in the current page (page 1 in our 
example) or word 105 in the common page (page 0). In the PDP-8, the Y bit is used for this page selection; we 
call it the page bit. 



If the page bit is 1, the page address of the current instruction is concatenated with the 7-bit offset in the 
instruction to form a full 12-bit address, which is sufficient to identify any word of the 4096-word memory. If 
the page bit is 0, the reference will be to a word in page 0 of the memory. 

If we execute an instruction at location 301 that contains 001 011 000 1012, we will add the contents of 
location 105 in page 1 to the AC. Location 105 in page 1 is memory location 305 

000  01  1  000  101 = 3058 
Page 

address 
 Page 

offset 
  

I f  location 301 contains 001 001 000 1012, the instruction would mean to add the contents of location 105 in 
page 0 to the AC. Location 105 in page 0 is memory location 105. 

Indirect addressing. We have shown how the page bit and the page offset combine to yield an address either 
in page 0 or in the current instruction page. What happens if a command in page 2 needs to access a location 
in page 7? We must use all 12 bits of a word as address bits. We can do this if the word accessed by an 
instruction is treated not as an operand but as the address of an operand. This extra step is called indirect 
addressing. The PDP-8 uses the remaining instruction bit X as the indirect bit to specify indirect 
addressing. The complete format of a memory referencing instruction is 

Op code Indirect Page Page offset 
3 bits bit bit 7 bits 

In the previous examples, the contents of locations 305 or 105 (for page bits 1 or 0) were treated as 12-bit 
data words. If the indirect bit is on, these contents are treated as 12-bit addresses of data. We require one 
extra memory cycle to access this final indirectly addressed data location. 

Indirect addressing is a powerful concept since it provides a way to specify arbitrary 12-bit addresses. Into 
some memory word IND that is close to our instruction or in page 0, we load the address of the final location 
that we wish to access. We can then access the location by indirectly addressing it through IND. 

It is useful to have a shorthand for the final memory location reference in an instruction after all applicable 
paging and indirect addressing are invoked We call this final location the effective address, EA. The contents 
of location EA is called the contents of the effective address, EO. (EO is sometimes called the effective 
operand.) Using EA and EO, we can compactly describe the memory references of any PDP-8 instruction. 

Examples of memory addressing. Here are some examples of referencing memory using PDP-8 instructions. 
The addresses will have 12 bits, since the PDP-8 has 4096 words of memory. We refer to the contents of an 
addressed memory location by enclosing the address in parentheses: I f  location 0301 contains 0305, then 
(0301) = 0305. Note that (EA) = EO. 

Now assume that the following memory locations have been loaded with the data shown: 

(0301) = 1305 (0305) = 1234 
(0302) = 1105 (0105) = 4321 
(0303) = 1705 (1234) = 5567 
(0304) = 1505 (4321) = 7765 

(a) What are the EA and the EO for the instruction located at 0301?    EX1 

(0301)=1305 1305 = 001 0 1 1  000  1012 
   TAD Indirect 

bit 
Page 
bit 

Page offset 
=105 

 EA:  concatenate page address with the page offset when the page bit=1 
         (symbol for concatenate operator is 

! 

") 

EA = 000 01 

! 

" 1  000  1012 = 0305 

  Page 
address  Page 

offset   



 EO = contents of memory at address 0305    (EO =1234) 
 This instruction would add the quantity 1234 to the contents of the AC. 

(b)  What are the EA and the EO  for the instruction located at 0302?   EX2 
(0302) = 1105 = 001 0 0 1  000  1012 
    TAD Indirect 

bit 
Page 
bit 

Page offset 
=105 

EA = 0105      
EO = (0105) = 4321    

This instruction would add the quantity 4321 to the contents of the AC. 

 (c)   What are the EA and the EO  for the instruction located at 0303?   EX3 

(0303) = 1705 = 001 1 1 1  000  1012 
    TAD Indirect 

bit 
Page 
bit 

Page offset 
=105 

EA = (0305) = 1234    
EO = (1234) = 5567    

This instruction would add the quantity 5567 to the contents of the AC. 

(d)   What are the EA and the EO  for the instruction located at 0304?   EX4 

(0304) = 1505 = 001 1 0 1  000  1012 
    TAD Indirect 

bit 
Page 
bit 

Page offset 
=105 

EA = (0105) = 4321    
EO = (4321) = 7765    

This instruction would add the quantity 7765 to the contents of the AC. 

Auto indexing. The PDP-8 has a feature called auto indexing that provides some flexibility in addressing. 
Most large computers have index registers to facilitate array access. Unfortunately, specifying an index 
register takes one or more bits of the instruction and we have no bits left. The PDP-8’s auto indexing is a 
primitive way to index without using instruction bits. An auto index register is a word in memory that will 
automatically increment every time it is used as the source of an indirect address. The word is incremented 
before it is used as an address. Repeated use of the same auto index register will sequence the effective 
address, EA, throughout the full memory address space. There are 8 auto index registers in PDP-8 main 
memory, locations 108 through 178. When not performing auto indexing, these locations behave like normal 
memory words. 

Here are some examples of auto indexing. Assume the following locations have the contents shown: 

(0013) = 4102 
(4102) = 1111 
(4103) = 2000 

(a)           EX5 
Instruction = 1013 = 001 0 0 0  001  0112 
    TAD Indirect 

bit 
Page 
bit 

 

EA = 0013      
EO = (0013) = 4102    

Although location 0013 is the address, there is no auto indexing because the indirect bit is 0. This 
instruction adds the quantity 4102 to the contents of the AC. 

(b)           EX6 
Instruction = 1413 = 001 1 0 0  001  0112 
    TAD Indirect 

bit 
Page 
bit 

 

EA = 0013      



The initial address is 0013. This is an auto index location used as an indirect address. The auto 
indexing feature causes 

 (0013) (+) 1  (0013) or 
 4102 (+) 1  (0013) 
Then    
 EA = 4103 
 EO = 2000 

The effect of executing this instruction is to increment the contents of location 0013 by 1, and to 
add the quantity 2000 to the contents of the AC. 

Whew! Frankly, this is pretty ugly and the EA,EO gyrations of the PDP8 are due solely to its 12-bit 
memory limitation. Modern giga-byte RAMs cost only a few dollars but you can’t project that mind set 
back to the PDP8 era where memory was enormously expensive and dictated CPU architectures of the day. 
Regardless, all processors, old or modern, break down instruction execution into a fetch phase which is 
responsible for generating an EA and EO and the fetch ASM will have to provide them to the execute 
apparatus. (Much of the driving force behind modern RISC architectures is dedicated to minimizing the 
time required to generate EA and EO but that’s a subject you will explore in detail later in a course in 
computer architecture). 

PART 2 
PRELIMINARY DATA PATH ARCHITECTURE 

The instruction set already tells us a good deal about the machine’s major architectureal elements and we 
can embark on a preliminary specification before formulating an ASM. In order to be consistent with the 
principles set forth in Chapter 5, we plan for our design to be synchronous and static. Further, since this is a 
pedagogical exercise for the budding designer, we should strive to develop good design habits. All major 
building blocks should be "out in the open." We wish to use building blocks of the right scale for our 
example. We could build everything from transistors or from AND, OR, and NOT circuit elements, as the 
original designers were forced to do, but such approaches are hopelessly outdated and would not teach you 
how to use higher-level building blocks, such as those discussed in Chapter 3. We will rigorously follow 
the 8I’s instruction set but there is no reason to restrict ourselves to the  original rather primitive control 
panel so we will take some liberties there. 

The major building blocks are: 

• Memory (MEM): At this point we can’t specify more, it could be any variety of RAM and we are free 
to choose the type but it must conform to the 12-bit address limitation, ie, it will be 4k x 12. As 
discussed in Chaper 3, we can assume that it will be accompanied by a 12-bit address register and a 12-
bit data register to hold the data to be written into memory or read from memory. Traditionally, the 
address register is called the MA (memory address register) and the data register the MB (memory 
buffer register). 

• Program Counter (PC): Although not explicitly specified by the instruction set, every computer needs 
some way to specify the memory location of the current instruction in memory; without further ado we 
can assume our machine wil contain a PC and its size, 12-bits, will be determined by the 4k x 12 
memory. 

• Instruction Register (IR): Although not explicitly specified by the instruction set, every computer 
needs some way to hold an instruction for decoding and execution. 

• Accumulator (AC): A 12-bit register to hold the results of arithmetic and logical operations. Although, 
at this point, we might suspect that the AC could be used to accomplish some of the instruction set’s 
operations we must emphasize that this decision should be postponed until after we have explored the 
machines’s ASM. Never restrict your options before you have to. 

• Link: A 1-bit register to handle overflow from the AC. We must be able to SET, CLEAR, and 
TOGGLE the Link as well as load bits shifted out from the AC. 



• A control panel: The instruction set assumes there is a means of OR’ing a 12-bit manual operand (SR, 
the switch register) to the AC. Most machines also use the control panel to start and stop execution and 
we can assume this functionality even though it is not explicitly laid out in the machine specification. 
Starting the machine also implies that we know where in program memory we should start.; this implies 
that the PC can be initialized from the SR. If you were to build a true hardware implementation rather 
than a simulation you would certainly wish to display all the registers on a liquid crystal display, 
alternately, you might want to be more modern and replace the control panel with a conventional 
keyboard/monitor setup, but that is left as an exercise.  

• ALU: machine must be able to do the following arithmetic and logical operations: 

(a) 12-bit logical AND  (AC) • EO  AC 

(b) 12-bit PLUS  (AC) (+) EO  AC 

(c) Increment AC and PC AC (+) 1 AC is part of the microcoded instructions. PC (+) 1  PC 
is part of normal instruction sequencing as well as the conditional skip in the ISZ command 

(d) 12-bit logical OR (SR) + (AC)  AC 

(e) 12-bit logocal NOT (1’s complement) 

(f)  Register Shifts, Clears, and Loads. For bookkeeping purposes we list these operations under the 
ALU heading but suspect that we may want to offload these operations to the target registers 
themselves although we may want to rout the data through the ALU. 

Data Paths 
We have identified major elements of the PDP8's architecture by looking at the PDP-8's functions. Now 
that we have this set of elements, how do we put them together? In true top-down spirit, we will leave them 
scattered about on the desk and back off far enough to ask a question. How does the PDP-8 instruction set 
say they should be connected? Contemplating this question will lead us surprisingly close to the final 
architecture. We assume that the ALU has two 12-bit input paths and that it will handle all logical and 
arithmetic operations. Let's see how the PDP-8's instructions guide us to a model of the data paths among 
the building blocks. 

(a) IAC, Increment Accumulator: AC (+) 1  AC. If the ALU does the addition, the AC and 
the ALU must be connected in a manner similar to Fig. 7-2. (In this and subsequent figures, the 
data paths are all 12 bits wide, and we call the output of the ALU the ALUBUS.) Execution of 
the IAC microinstruction must result in setting the ALU control lines to force the ALU to 
increment the input and place the result on the ALUBUS. 

 
Figure 7-2 Data flow for 

incrementing the AC 

(b) TAD, Two's-Complement Add: AC (+) CA AC. This instruction requires an architecture 
like that in Fig. 7-3. Here the ALU's control lines must make the ALU add its two data input 
quantities and place the result on the ALUBUS. 



 
Figure 7-3 Data flow for 

addition 

 

(c) AND: AC•CA -4 AC. This instruction again leads to Fig. 7-3, where this time the ALU must 
perform the bit-by-bit logical AND of its data inputs. 

(d) OSR OR Switch Register: AC + SR AC. Both the switch register and the AC must be 
inputs to the ALU, as shown in Fig. 7-4. 

 
Figure 7-4 Data flow for the OR 
Switch Register (OSR) operation 

 

(e) Increment the program counter: PC (+) 1  PC. This operation is implied in any 
computer, since after one instruction is completed the next one will be executed. This normal 
sequencing will continue, instruction after instruction, until a programmed branch operation 
causes the PC to be set to a branch address. Normal (nonbranch) sequencing leads to Fig. 7-5, 
in which the ALU performs the increment operation. 

(f) Load the program counter: This results from the branching case mentioned above and 
requires the operation EA  PC. At this point we could establish a private data path into the PC 
so that EA   PC; but look at the requirements of operations (a) through (e) that are leading to a 
common architecture. Examining those cases, we may reason as follows 

 
Figure 7-5 Data flow for incrementing 

the program counter (PC) 

Developing the main bus structure. The AC seems to have pinned down one of the two data inputs that 
are a part of the ALU building block, let’s arbitrarily call it the “B” input. The other input comes from a 
variety of sources: the contents of the effective address EO, the switch register SR, and the program counter 
PC, so we require a way of selecting the proper input to the ALU, lets call it the “A” input. Recall the 
discussions of data busing in Chapters 3 and 4. One good way to route several data sources to an output is to 
have three-state buffers on each source output. Enabling one of the source buffers lets that source "talk" to the 
ALU, as shown in Fig. 7-6. (Remember, all data paths are 12 bits wide.) This is an economical way to route 
the data. Some register integrated circuits include three-state output control; using such chips might eliminate 



some of the separate buffers in Fig. 7-6. 

 

 
Figure 7-6 Controlling the ALU input with 3-state buffers 

Another approach to the selection of the ALU's input is to use the multiplexer building block to 
select the appropriate input (see Fig. 7-7).  

 
Figure 7-7 Selecting ALU inputs with a mux 

There is one multiplexer for each bit of the 12-bit data path. We now have two choices for busing the ALU 
input. Using tri-state buffers or mux’s to put sources on a bus is technology dependent, and also a matter of 
personal style. Using mux’s guarantees that there is only one “talker”, but at the cost of having to generate 
mux select controls. Tri-state buffers require care to avoid the multiple talker problem. On the other hand tri-
state enables can be read directly from the ASM chart, a trivial task. Our strong personal preference is to use 
tri-state and our exposition of the PDP8 data path will be based on tri-state protocols. 

Our study of PDP-8 operations has led to this architecture. We may ask if the structure could be generalized to 
handle the case EA PC, which arises when the PC register is loaded with a branch address. The answer is, 
of course, yes: we add an EA tri-state buffer to the ALU input bus. To execute the branch operation, we must 
set tri-state enable to select EA, and must set the ALU controls to pass this ALU input unchanged to the 
ALUBUS. If a load signal to the PC accompanies these operations, we would perform EA PC. It is 
significant that we have accomplished the goal by generalization rather than specialization. 

This is a discovery that we should try to carry as far as we can. We now have a mechanism for moving data 
from one register to any other, as well as a way of performing logical or arithmetic operations on the ALU 
data inputs. These capabilities are nearly all the structure we need to build a computer. Again, let us note 
that we were led to the architecture in a direct manner by a careful consideration of the fundamental 
requirements of the PDP-8's instruction set.This is not the way some designers proceed. They start with a 
structure (a guess, really) based on a certain set of library modules, and then try to bend the design to fit 
that guess. Sometimes the bending can require enormous leverage, when it could be side-stepped by 
redefining the architecture. Unfortunately, at that point it is too late; the designer's mind is already in a 
groove and it is difficult to jolt it out. I f  you let your target lead you to the architecture, you can avoid this 



groove until the last possible moment and save yourself anguish. 

Adding memory. Now it is a simple matter to expand the tentative architecture of the PDP8 to handle the 
remaining data transfers. We need to take care of memory and its interaction with the memory address and 
memory buffer registers MA and MB. The MA register gives memory the address at which to perform a 
read or write operation; therefore, MA must be wired directly to the memory. MA must be loaded with 
address data from various sources (e.g., EA), so we make MA a destination on the ALUBUS. So that data 
from the memory can reach other destinations, the output of memory connects to the data bus. Memory 
write operations require input from MB in addition to MA. The MB holds the write data and must be 
connected directly to the memory. The memory buffer register's input may come from a variety of sources 
yet to be specified, so we will make MB a destination on the ALUBUS. Figure 7-8 shows the proposed 
routing of the memory data. 

 
Figure 7-8 Memory data flow 

Handling EO. This is a good time to investigate EO, the contents of address EA. EO is not a register; 
rather, it is a concept that we introduced to aid our understanding of the operations of PDP-8 instructions. 
Where do values for EO come from? Remember that  EO = MEM(EA): EO is the contents of the location 
referenced by EA. Thus EO comes from the memory. We have just proposed an architecture for reading 
and writing memory data. I f  we route an address EA into MA over the existing paths, then a subsequent 
memory read command will give us EO. Therefore, we may eliminate EO from our A bus inputs, realizing 
that our recent addition of the memory system incorporates the data movement for EO. 

Fetching instructions. Can we use our basic data routing scheme to acquire the next instruction from 
memory and move it to the instruction register IR? The memory is already a source on the data bus, so we 
simply make the IR a destination on the ALUBUS. At the time of instruction fetch, our design must select 
MEM on the A bus, cause the ALU to pass its input without modification, and then cause the IR to load the 
result from the ALUBUS. 

Handling shift operations. Last, we must lay a plan for the data movements for the left and right shift 
instructions, which involve the AC and the link bit. One approach would be to include the shifting 
capability in the ALU building block. This would be acceptable design practice. On the other hand, one of 
our basic modules is the parallel-in parallel-out shift register, which will shift or retain its value or load a 
new value upon command. Since the shift operations in the PDP-8 involve only the AC and LINK, let's 
make the AC a shift register in addition to its earlier assignment as a holding register. In this event it 
appears unlikely that the shift operations will affect the basic routing of the data. 

The PDP8 data bus. The initial proposal for the architecture of the data path is complete, and appears in 
Fig. 7-9. We have derived the structure from first principles based on the requirements of the PDP-8's 
instructions, and although we have used our knowledge of good building blocks we have not committed 
ourselves to any particular set of modules. This initial architecture turns out to be very close to the final 
requirements that will emerge from more detailed study. 



 
Figure 7-9 An initial proposal for the 

architecture of the PDP8 data path 

 

It is now time to consider the PDP8's control algorithm. We use our tentative architecture as a framework 
for developing the control; understanding the control will, in turn, lead us to a refined architecture. 
Throughout all this, we remain aloof from the actual hardware until we thoroughly understand both the 
architecture and the control. 

Designing an ASM 

Our philosophy: the first ASM iteration should focus on correctness, not efficiency. Make an ASM that is 
transparent as possible, test it and work out the inevitable kinks. If you’re not sure you can share a register-
don’t, just create a new one, above all, keep it simple. After you have a working ASM it is always easy to 
go back and look for optimizations.  

Our first “divide and conquer” step is traditional: we break the complete machine cycle into a fetch phase 
responsible for getting a new instruction, decoding that instruction, preparing the EA and EO, and then 
passing that information to the ASM’s execute phase. Execute will need the instruction, EA, and EO in 
standard locations and we can use registers IR, EA, and MB for that purpose. MA works for the EA since 
we no longer need the MA after the EA is calculated and we can make that register do double duty. Similar 
arguments apply to EO and MB. 

The EA, EO portion of the FETCH ASM: 

ASM notation conventions: 

Up to now we have used the (REG) notation to signify the contents of REG and this appropriate when 
discussing the meaning of various instruction operations where precision is important. This gets slightly 
clumsy in an ASM where compactness is a virtue and we can relax the rigidity as long as we know what we 
mean. In an ASM, REG on the left side of an arrow means the contents of that REG; on the right side it will 
mean the name of a destination register. 

And lastly, we will deviate from the DEC convention for numbering bit positions. Nearly every modern 
computer labels the least significant bit (LSB, or right most bit) as BIT0, whereas DEC labels that as BIT11. 
This grates on the author’s sensibilities and from now on we will use the modern convention where the 
most significant bit (MSB) will be BIT11. You will not detect any problems unless you delve into original 
DEC documentation where you have to be aware of the changed convention. 

F0, (Fetch State 0, load the MA):  

As a starting point, assume we are in the middle of an executing program, bypassing for the moment how 
we got here. What do we know? Not much really, but enough. The PC points to the next instruction so lets 



get it and save it in a hidden hardware register called the IR (instruction register). At this point the need for 
a separate IR register is an assumption that elaboration of the ASM will either justify or refute but for now 
it is a harmless assumption and a nice aid in organizing our thought processes, (see our philosophy above).  

To access memory we will have to load an address, in this case the contents of the PC, into the memory 
address register and wait for the memory to deliver the contents of that cell. In this case we can use the IR 
as a destination register. For the PDP8’s microscopic memory, (4k x 12), there is no reason to use anything 
but static RAM with its simple interface. The machines clock speed will be determined by the memory 
cycle time so we can assume that memory operations will complete by the end of one clock cycle. 

In F0 we present the (PC) to the MA’s inputs, wait during F0 for the input to stabilize, then load the MA on 
the clock edge ending state F0. 

 
F1, In all computers the default instruction sequencing is one-after-the-other unless a JUMP instruction 
alters flow. So we might as well take care of the default early in the fetch cycle and increment the PC. This 
is an example of parallel execution, while the ALU is incrementing the PC,  the autonomous memory unit 
automatically starts a read operation when the new address is loaded into MA at the start of F1. 

 
F2, (load the new instruction into the IR) 

 
F3, This is where it starts to get interesting; can you think of cases where fetch has finished its work and no 
more memory accesses are required? How about opcode7, the OP instruction requires neither an EA or EO. 
The other cases are instructions that requires an EA but not an EO. For direct JMP, JMS, and DCA the EA 
is all that is needed. JMP and JMS go to MEM(EA) and DCA stores something in MEM(EA).  

The IR now contains enough information to allow the EA calculation so we can branch to E0 after placing 
the EA where execute expects to find it (in the MA register). We can lump these cases together as NOEO 
(No memory access required to retrieve an EO, this will be true at this point in the ASM only for the OP 
instruction or if JMP, JMS, and DCA are direct instructions. (Indirect versions will be handled at F7). 

 
A small alarm bell should go off any time you load a new value into the MA register; this automatically 
starts a new autonomous memory read, in this case at he end of F3, and if we take the NOEO branch, 
continuing during the E0 clock cycle. E0 better not be wanting to use the memory during this time so make 
a mental note to go back and check for this when you design the execute ASM. The same is true on the F4 
branch, but in this case this is precisely what we want the memory to be doing. 

F4, This is the most complex fetch state. The simplest case is for directly addressed operands where IR8=0. 
In this case the EA computed in F3 points to the EO and the memory is already busy retrieving it. All we 



have to do is wait for memory stability, load it into the standard EO register, (which is MB), and branch to 
E0. 

 
However, if IR8=1 we have an indirect address and have to do it all over again; this is sometimes hard to 
fathom unless you have programmed in assembler and are familiar with indirect addressing. You may want 
to go back to the EA,EO examples above. Until you get your mind wrapped around indirect addressing we 
will ignore auto indexing that is another complexity best revisited later. 

 
F7, Here we handle the final calculations of EA for indirect addressing. As in F4 we have two cases: those 
that don’t require an EO and those that do. 

 
F8, Get the EO and place it where Execute expects to find the EO. 

 
Putting it all together we get this preliminary ASM: 



 
Experienced designers treasure well defined hardware or software modules that have few connections to 
their enveloping environment; FETCH fits this bill nicely. There are only 2 inputs, PC and Memory, and 3 
outputs, IR EA, and EO. You must not accept this preliminary ASM on faith!! Now is the time to debug it 
before the complexity of the full machine confuses things. It will pay big dividends for you to manually 
rework examples EX1 – EX4, following the ASM to see if you wind up in E0 with the proper values for 
EA and EO. 

If you are building real hardwware in an FPGA or simulating it (and we hope you are doing one or the 
other) now is the time to see if you can bring this preliminary FETCH to life with gates, registers, and  a 
primitive ALU, which at this point in our development must be capable of conditionally incrementing its 
“A” input. (hint: review half adders). 
 
What about F5 and F6? Auto indexing requires us to increment one of the memory locations between 00108 
and 00178 before using it as an EA. Further, the incremented value must be written back to the same auto 
index location.  


