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Before you begin this journey into digital design, it is important that you 
understand the philosophy that will guide your study. If you have not read the 
Preface, do so now before you go on. There we discuss the issues that give rise 
to the need for good style and structure in digital design. Also, the Preface 
contains an outline of the book, which will give you a view of where you are 
heading and how you will get there. It is particularly important that you 
understand our approach to the details of digital hardware. The overriding 
emphasis is to let the problem solution dictate the hardware, rather than allowing 
premature commitments to hardware coerce the solution. This conscious 
suppression of hardware detail during most of the design pays big dividends. 
Chips and wires and power supplies are still important—they are vital to 
success, and you will need a good background in many areas of digital 
technology in order to transform your designs to a commercial product—but too 
often in digital design the hardware has dominated the solution to the problem. 
To head off this common malady, we stress the theory of sound design and leave 
broader issues of production technology to further study. 

THE NEED FOR ABSTRACTION, FORMALISM, AND STYLE  

Style 
The human mind needs help when it tackles complex tasks. As we use the term, 
style is a method of partitioning a large problem into manageable subunits in a 
systematic and understandable way. The need for good style is more apparent as 
problems become larger. The most complex projects ever attempted by human 
beings have been computer programs; some, exceeding many million lines of 
code, are so large that no one person is able to encompass the entire program, or 
even a significant part of it. The study of programming style was forced upon 
practitioners of the art as a way of gaining control over their projects. 
Programming style has blossomed into a rather well defined set of techniques, 
bearing such names as "top-down" and "structured." The hardware of a large 
computer involves complexity on the same scale as these giant computer 
programs. The study of style in digital system design is not as well developed as 
its programming counterpart but is nonetheless essential to success. In this book, 
we emphasize style. 

Here are some rules of good style in digital design: 
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Design from the top down. The design starts with the specification of the 
complete system in a form compact enough that one person can readily 
comprehend it. The design proceeds by sectioning the digital system into 
subunits such as memory, arithmetic elements, and control, with well-defined 
interrelationships. You may then describe each unit in more detail and still retain 
the ability to comprehend both the whole structure and the details of the units. 
This process continues until you have completely specified the system in detail, 
at which time construction may begin. 

Use only foolproof techniques that will keep you on the narrow path of safety in 
the design process. Digital hardware allows a high degree of flexibility in 
design—so much flexibility that designers can bury themselves in clever and 
unusual circuits. Uncontrolled use of such flexibility promotes undisciplined, 
unintelligible, and incorrect design of products. This phenomenon has its 
counterpart (to a less severe degree) in computer software because assembly 
language programming offers access to the full power of a digital computer. 
Experience in the solution of hardware and software problems has shown that 
we must restrict our design tools and techniques to those that can be shown to 
work reliably and understandably under a variety of circumstances. 

Use documentation techniques, at both the system level and the detailed circuit 
level, that clearly portray what you, the designer, were thinking when you 
reduced your problem first to an abstract solution and then to hardware. This 
often-violated precept boils down to common courtesy. Put yourself in the 
position of a user or a maintainer of your hardware design; in such a position 
you would be grateful for clear, complete documentation. 

Abstraction 
In our context, abstraction means dealing with digital design at the conceptual 
level. The concept of a memory, a central theme in every computer, is an 
abstraction. When starting a design we need to deal with conceptual elements 
and their interrelationships: it is only later in the design process that we need to 
worry about the realization of the concepts in hardware. This freedom from 
concern about the details of various hardware devices is absolutely essential if 
we are to get a good start on a new design of any complexity. Start at the top and 
begin reducing the problem to its natural conceptual elements. For example, a 
computer will need a memory, an input-output system, an arithmetic unit, and so 
on. We ordinarily begin a design at this highly abstract level, and carry the 
conceptual process down, level by level. Thus, at the next level we draw a block 
diagram of an arithmetic unit by interconnecting functional units such as 
registers, control units, and data paths. The initial abstraction is a critical part of 
any design, since bad early planning will inevitably lead to bad 
implementations. There is no way to rescue a bad design with clever tricks of 
Boolean algebra or exotic integrated circuits. 

Formalism 
Formalism is the theory of the behavior of a system. In a digital design, 
formalisms help us to establish systematic rules and procedures with known 
characteristics. Formalisms are important at all levels of design. In the 
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traditional study of digital systems, one of the principal formalisms is Boolean 
algebra, the theory of binary logic, named after George Boole, who studied it 
long before the advent of digital computers. Boolean algebra is an essential tool 
for describing and simplifying the detailed logical processes at the root of digital 
design. Powerful and well developed as Boolean algebra is, it nevertheless 
becomes of less benefit as our level of abstraction increases. For instance, at the 
top ("systems") level of abstraction, where we are thinking in terms of the 
movement, storage, and manipulation of data, Boolean algebra is of little use. As 
we move closer to the detailed implementation—as our design becomes less 
abstract and more concrete Boolean algebra begins to be a useful tool. 

At the systems level, the formalisms are less well developed, appearing as 
structures and rules rather than mathematical constructs. High-level formalisms 
are nevertheless of great importance to good design, for only by adopting 
systematic methods at all levels can we hope to transform correct concepts 
reliably into correct hardware. 

LOGIC IN DIGITAL DESIGN 
Imagine trying to speak without the words and, or, and not. Discarding these 
little words would severely handicap our ability to express complex thoughts. 
Although and, or, and not each have several meanings in English, the most 
profound uses describe logical combinations of thoughts: "I have money for gas 
and my car is running"; "There is a paper jam or the printer is out of paper"; 
"She will not fail." Our thought processes are molded by our language, and 
when we design digital systems we will use and, or, and not in the same sense as 
above. In this book, we denote the specific logical uses of and, or, and not by 
the symbols AND, OR, and NOT. 

It is nearly always useful to formalize heavily used concepts; by so doing we 
achieve compactness and are able to handle more complexity than if we wrestle 
with informal concepts such as the normal English language uses of and, or, and 
not. To pave the way for a Boolean algebraic treatment of digital logic, we will 
formalize the concepts of logical constants, variables, and operators. 

Logical Constants 
The statement "There is a photodiode error" is either true or false. The operators 
AND, OR, and NOT are likewise concerned with two logical values, true and 
false. 

We will concern ourselves only with logic systems that can be formalized with a 
binary set of logical constants, TRUE and FALSE. Since we use these concepts 
so heavily, it is worthwhile seeking abbreviations. We will represent TRUE by T 
or 1, and FALSE by F or 0. In this context 1 and 0 are not decimal numerical 
values; they are abbreviations for TRUE and FALSE, and nothing more. We 
will use 1 and T, 0 and F interchangeably in the text. Each abbreviation has its 
value, and both are widely used in digital design. In the study of hardware 
implementation of logic in Chapter 2, we will show a strong bias toward the T,F 
notation, to avoid a common point of confusion. On the other hand, in much of 
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this chapter the 1,0 form for TRUE and FALSE is convenient. Be prepared to 
accept and use either form. 

Logical Variables 
Consider the declaration: 

A = photodiode error 
We use the logical variable A as an abbreviation for the cumbersome phrase 
"photodiode error" to achieve compactness. The variable A can have two values, 
T or F. If we do not have a photodiode error, then A = F; if we do, then A = T. 
Although it is possible to use single letters to represent logical elements, as we 
have above, it is usually better to use a more recognizable abbreviation, such as: 

PDE = photodiode error 
In general, the abbreviations should be a compromise between clarity and 
brevity. It is not really necessary to abbreviate at all. We could use 
PHOTODIODE.ERROR as the name of the logical variable, but it is too long to 
be convenient. A is short but conveys no meaning; PDE is a good compromise. 
We often use numbers in logical variables to indicate a particular member of a 
set of variables. A common unit of computer information is the 8-bit byte. If we 
needed to examine the individual bits of the byte, we might choose to assign 
distinct names to the bit values:  

B7= left-most bit 
. 
. 
. 

B0=right-most bit 
Other notations for sets of variables will suggest themselves. Instead of the 
distinct names for bits in the byte, we might choose to use a subscripted variable 
B7 . . . B0 with equivalent meanings. 

In this book we will capitalize the letters in the names of logical variables and 
will always start each name with a letter. To preserve the mnemonic value, 
names of variables may include periods as separators; GO.ON is an example. 

Truth Tables 
Consider a set of logical variables, each variable of which may have one of two 
values, T or F. In digital design we are interested in combining logical variables 
(e.g., using AND, OR, and NOT) to produce new variables that again have only 
two possible values, T or F, for any combination of given variable values. In 
other words, we wish to study binary functions of binary variables. 

For a set of logical variables, we may define any desired function by giving the 
function value for each possible set of variable values. A tabular form with input 
variables on the left and the function on the right is useful for this display. For 
example, here is a logical function X of three variables A, B, and C, shown in 
both the 1,0 and the T,F notations. 
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C A B X  A C B X 
0 0 0 0  F F F F 
0 0 1 1  F F T T 
1 0 0 1  F T F T 
1 0 1 0  F T T F 
0 1 0 1  T F F T 
0 1 1 0  T F T F 
1 1 0 0  T T F F 
1 1 1 0  T T T F 

Such a display is called a truth table. Having chosen an ordering of the input 
variables (A, C, B in this case), we list all possible combinations of the 
variables' values, in binary numeric order. Tabulation in this standard form is 
called a canonical truth table. "Canonical" means standard. For three variables, 
the canonical truth table has 23 = 8 rows, arranged from binary 000 through 
binary 111. Since each binary bit pattern corresponds to a decimal number, we 
may describe a row of a canonical truth table by its decimal number equivalent. 
For example, the row corresponding to the variable values 0110 for a four-
variable function may be called row 6. When convenient, you may write the row 
numbers on the left of the canonical truth table. 

For canonical truth tables, we may compactly describe the function by a vector 
of function values. For example, the three-variable truth table for X above yields 
an eight-element vector 

X(A,C,B) = (0,1,1,0,1,0,0,0) 

Although we usually choose to list the values of variables in canonical order, 
any other order of rows displays the same information. The following two truth 
tables are equivalent, but the right-hand table lacks the useful uniformity of the 
canonical form on the left: 

Row number D E Y  Row number D E Y 
0 0 0 0  2 1 0 1 
1 0 1 0  0 0 0 0 
2 1 0 1  1 0 1 0 
3 1 1 0  3 1 1 0 

Logical Operators and Truth Tables 
We will now give a precise definition of the three logical operators AND, OR, 
and NOT. 

NOT. We represent logical NOT by the over-score. Thus, if PDE is a logical 
variable, then 

! 

NOT  (PDE) = PDE  

In words, we would describe the notation   

! 

PDE  as "PDE not." We may define 
NOT by listing in a truth table all possible values for an arbitrary logical 
variable, and the corresponding values of the logical NOT of that variable. Since 
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a logical variable A can have only two values, 1 and 0, the following list is 
exhaustive: 

A 

! 

A 
0 1 
1 0 

We regard the formal definition of logical NOT to be given by its truth table. 
Remember that 1 and 0 represent TRUE and FALSE. 

AND. We represent logical AND by a dot separating two logical variables we 
write B AND C as B•C. We shall faithfully use the "•" symbol to represent the 
AND operator even though some authors omit it when dealing with single letter 
logical variables. Thus, if you insist upon single-letter names, you might 
interpret BC as B•C. This is dangerous because we may want to name a single 
logical variable with the two-letter name BC. In real-world logic design, single 
letter names are not descriptive enough to be of use. There are only 26 possible 
single-letter names and a typical design will require many more than 26 names. 
We therefore give up the dubious advantage of having an implied AND for the 
real advantage of multi-letter names for logical variables. 

We will define AND with a truth table. There are two independent variables in 
the logical AND, each of which can assume either of the two values, 1 and 0. 
Therefore, specifying the function value for each of the four combinations of 
inputs completely defines AND: 

B C B•C 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

The table corresponds to our intuitive notion of AND in that B•C is true only if 
both B and C are simultaneously true. 

Just as we may generalize the English use of and to encompass more than two 
variables, we can do so for the formal logical AND. The truth table for A•B•C is 

A B C A•B•C 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 0 
1 1 1 1 

For more than three variables, the truth table becomes unwieldy, and we revert 
to a verbal definition of the logical AND: 

The logical AND of several variables is true only when all the variables are 
simultaneously true. 
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OR. The symbol for logical OR is the + sign. Do not confuse this with the use of 
+ in other contexts to represent arithmetic addition. Since in logic design the 
uses of logical OR will vastly outnumber the uses of an arithmetic plus, we 
choose a convenient single symbol for the OR operator and we use the more 
cumbersome word "plus" or the symbol "(+)" for an arithmetic plus. Here are 
two word statements translated into their corresponding logic design notations 

A is true if B OR C is true  A=B + C 
2 added to 3 is 5   5 = 2 plus 3, or 5 = 2 (+) 3  

The defining truth table for a two-input logical OR is 

B C B+C 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

As with the AND operator, we may generalize the definition of the 
logical OR to more than two input variables. In words, the output is true 
if at least one of the inputs is true. For instance, 

AY PDE X AY+PDE+X 
0 0 0 0 
0 0 1 1 
0 1 0 1 
0 1 1 1 
1 0 0 1 
1 0 1 1 
1 1 0 1 
1 1 1 1 

This completes our definition of AND, OR, and NOT. These logical operators 
operate on input variables to yield a single output. The NOT operates only on 
single variables, while AND and OR fundamentally operate on two inputs. For 
our convenience we may also think of AND and OR as multi-input operators. 
Truth tables are useful in many designs, but we need a more compact and 
powerful tool for representing logical manipulations. An algebra of logical 
operators, called Boolean algebra in honor of George Boole, who first explored 
the properties of the logical operators, is analogous to the familiar algebra of 
arithmetic operators. In the next section, we present some simple but important 
Boolean algebraic results. 

ELEMENTS OF BOOLEAN ALGEBRA  
Basic Manipulations 
Boolean algebra is important to hardware designers because it allows the 
compact specification and simplification of logic formulas. Physical devices can 
perform the AND and OR functions, and it is this fact that raises Boolean 
algebra from the realm of interesting theory to the role of a vital design tool. The 
algebra may be developed from any of several starting points. Modern 
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mathematicians derive Boolean algebra from a compact set of abstract 
postulates, producing an elegant and rigorous theory; however, in building a 
useful tool to assist structured digital design, we best achieve our goals by 
emphasizing the relationship of truth tables to logic equations. Truth tables and 
allied tabular displays play an important role in digital design and 
implementation. Therefore, we will assume as our starting point the existence of 
the two binary values TRUE (T or 1) and FALSE (F or 0), and the three 
operators AND, OR, and NOT, with behavior described by their truth tables. 

Boolean algebraic formulas follow certain conventions. Our intuition tells us 
that we want the operators AND and OR to commute (e.g., A + B = B + A) and 
associate [e.g., A + (B + C) = (A + B) + C. The operators also distribute 
according to the relations: 

A•(B+C) = A•B + A•C 

A+(B•C) = (A+B)•(A+C) 

The conventional hierarchy of operator action in complex expressions is 
First:  NOT 
Then:  AND 
Last:  OR 

Our notation for logical NOT (the over score) explicitly shows the scope of 
action of the NOT operation, so the only possible confusion in evaluating 
expression would occur with AND and OR. As the hierarchy shows, AND takes 
precedence As an example, consider 

! 

X = A+B•C  
Evaluation is in the order specified below by the parentheses, innermost 
parenthesized expressions being evaluated first. Thus 

! 

X = ((A+ (B•(C )))) 

Parentheses are useful in Boolean equations to override the normal hierarchy, 
just as we use them for similar purposes in conventional algebra. 

Below are some fundamental relations of Boolean algebra; memorize these 
results. 

 
  

! 

A " A   (1–1) 

  

! 

A • T " A     

! 

A + F " A  (1–2) 

  

! 

A •F " F     

! 

A + T " T  (1–3) 

  

! 

A • A " A     

! 

A + A " A  (1–4) 

  

! 

A • A " F     

! 

A + A " T  (1–5) 

! 

A•B " A + B   

! 

A+ B " A• B  (1–6) 

Each identity involving AND or OR operators comes in two forms, one 
emphasizing AND, the other emphasizing OR. This principle of duality is a 
characteristic of Boolean algebra, and it has important applications in the study 
of logic and in the implementation of logic functions with physical devices. The 
dual identities are related by this rule: 
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Change each AND to OR, each OR to AND, each T to F, and each F to T. 
Equation (1–6) is the well-known De Morgan's law. It is of special importance 
because it allows us to convert Boolean operators from AND to OR, and vice 
versa. 

You may prove each of the foregoing identities by using the truth-table 
definitions of the logical operators. To illustrate the art of proving theorems with 
truth tables, we will prove the validity of De Morgan's law. Start with the form 

! 

A•B " A + B . Develop truth tables for the left-hand side and for the right-hand 
side of the identity. (When convenient, we may show several functions [outputs] 
in the same table: we write two or more truth tables in one package.) 

A B 

! 

A•B  

! 

A•B   A B 

! 

A 

! 

B  

! 

A+B  
F F F T  F F T T T 
F T F T  F T T F T 
T F F T  T F F T T 
T T T F  T T F F F 

A truth table is an exhaustive list of function values for each possible 
combination of inputs; therefore, if two truth tables have identical rows, the 
functions behave identically. You see that the truth table for 

! 

A•B  is the same as 
that for   

! 

A + B ; this proves Eq. (1–6). 

De Morgan's law extends to more than two variables. For example, the 
following identities are valid. 

! 

A+ B+ C " A • B • C  

! 

A•B•C " A + B + C  
Several other Boolean identities find frequent use in our design work. You may 
demonstrate each relationship using truth tables or using the previous Boolean 
identity. 

! 

A+ A•B " A 

! 

A•(A+B)" A (1–7) 

! 

A+ A •B " A+ B 

! 

A•(A + B)" A•B  (1–8) 

! 

A•B+ A •B " B   (1–9) 

The left-hand form of Eq. (1–8) is not immediately obvious, but it is of great 
help in reducing the complexity of commonly occurring Boolean expressions. 
After De Morgan's law, Eq. (1–9) is perhaps the most widely used relation. It is 
the basis for several systematic Boolean simplification procedures. Presently, we 
will develop the one simplification method, Karnaugh maps, that will be of most 
benefit to our design work. 

Truth tables serve as an easy means of verifying the validity of small Boolean 
equations, whereas the Boolean identities presented above are useful in 
manipulating both large and small Boolean equations. Here is an example of 
Boolean algebraic manipulations. 
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! 

A•(B + C •(B + A ))" A•(B+ C•B+ C• A ) (distribution law) 

! 

" A•(B + C • A ) [Eq. (1–7)] 

! 

" A•B + A•(C• A ) (distribution law) 

! 

" A•B + A•(A •C) (commutation law) 

! 

" A•B + (A• A )•C (association law) 

! 

" A•B+ F •C [Eq. (1–5)] 

! 

" A•B  [Eqs. (1–3) and (1–2)] 

! 

" A + B  (De Morgan’s law) 

Equations from Truth Tables 
If the truth table and logic equation are to work hand in hand as design aids, we 
must be able to derive a logic equation for a function from its truth table. 
Consider this example: 

Row number A B W 
0 F F F 
1 F T F 
2 T F T 
3 T T F 

In words, W is true only if A is true and B is false (from row 2). More formally, 

! 

W = A•B. Another example is 

Row number A B Y 
0 F F T 
1 F T F 
2 T F T 
3 T T T 

Here, our intuitive understanding of the truth table is that Y is true whenever A 
is false and B is false (row 0), or whenever A is true and B is false (row 2), or 
whenever A is true and B is true (row 3). Thus 

! 

Y= A•B+ A•B+ A•B (1–10) 
Incidentally, we may simplify this equation: 

! 

Y= B+ A•B [by Eq. (1–9)] (1–11) 

! 

= B+ A [by Eq. (1–8)]  

Viewing this truth table another way, we may say that Y is false only when A is 
false and B is true (row 1): 

! 

Y= A•B  (1–12) 
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We have two equations for Y derived from the same truth table–Eqs. (1–10) and 
(1–12). Can you show that the expressions for Y are equivalent? 

Which way is best for writing equations from truth tables–reading true 
conditions for the function, or reading false conditions? Both ways result in 
equivalent expressions, usually in somewhat different form. For equations of 
more than two variables, when there are many rows in the truth table, you will 
usually wish to use the method that involves the fewer AND terms. In this 
example, Eq. (1–12), derived from the false function values, yields the more 
direct and simple result. 

Sum-of-products form. Equation (1–10) (and also Eq. [1–11]) expresses the 
function Y in the sum-of-products form. This is the most common form for 
deriving Boolean equations from truth tables, and in this context the form fits 
nicely with our thought processes. The name "sum of products" comes from an 
analogy of the Boolean operator symbols with those of arithmetic: the 
expression is a sum (OR) of product (AND) terms. 

In sum-of-products form, a product term consists of the logical AND of a set of 
operands, each operand being a logic variable or its negation. (A trivial form of 
product term consists of a single variable or its negation.) A variable's name 
must appear at most once in a product term. For example, 

! 

A , 

! 

A•B , and 

! 

A•B•C  are valid product terms, whereas 

! 

A•A and

! 

A•B•B•C, although valid 
Boolean expressions, are not proper product terms. 

A product term containing exactly one occurrence of every variable (either 
asserted or negated) is called a minterm or a canonical product term. A function 
expressed as a logical OR of distinct minterms is in canonical sum-of-products 
form or disjunctive normal form. Our intuitive method for deriving equations 
from truth tables yields the canonical sum-of-products form, as in Eq. (1–10). 
An expression may be in sum-of-products form yet not be canonical. Equation 
(1–11) is a noncanonical sum-of-products expression. 

We may now state formal prescriptions for deriving sum-of-products logic 
equations from canonical truth tables: 

To derive a sum-of-products form for a function from a canonical truth 
table, write the OR (sum) of the minterms for which the function is true. 
Similarly, to derive a sum-of-products form for the complement of a 
function from a canonical truth table, write the OR of the minterms for 
which the function is false. 

Applying these rules to the previous truth table yields Eqs. (1–10) and (1–12). 

For n-variable functions, there are 2n possible minterms. A minterm is 
sometimes designated by mi, where i is the number of the single canonical truth 
table row for which the minterm yields truth. For example, m4=

! 

A•B•C  yields 
truth only for variable values A=1, B=0, C=0; this corresponds to row 4, since 
binary 100 is decimal 4. Again, m2=

! 

A•B•C  produces truth only for row 2 
(binary 010). (The name minterm denotes that the term is true for only one row 
of the table.) With this notation, we may describe canonical sum-of-products 
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equations as sums of minterms. Equation (1–10) becomes Y = m0 + m2 + m3. 
Although this notation is important in certain developments of Boolean algebra, 
we will not use it frequently in this book. 

Equation (1–12) is a canonical sum-of-products equation for 

! 

Y, albeit a 
somewhat trivial form containing only one term. We may use the minterm 
notation for this form also: 

! 

Y= m1 

Product-of-sums form. There is another formulation of logic expressions 
from truth tables: the product-of-sums form. This form consists of the AND (the 
product) of a set of OR terms (the sums), such as

! ! 

(A+B)•(A+B)•(B). In a 
product-of-sums expression, a sum term consists of the logical OR of a set of 
operands, each operand being a logic variable or its negation, and each variable 
appearing at most once. 

A sum term that contains exactly one occurrence of every variable (either 
asserted or negated) is called a maxterm or canonical sum term. A function 
expressed as a logical AND of distinct maxterms is in canonical product-of-
sums form or conjunctive normal form. The product-of-sums notation is not 
much used in practical design, since it lacks the sum-of-products' easy kinship 
with our thought processes. An expression may be in product-of-sums form yet 
not be canonical, if one or more of the sum terms is not a maxterm. For a three-
variable function,  

! 

A+B+C  is a maxterm; 

! 

B+C  is not. 

! 

W = (P +Q+R)•(P +Q+R) is in canonical product-of-sums form;  

! 

W = (P +Q)•(P +Q+R) is not canonical. 

The prescriptions for forming product-of-sums logic equations from truth tables 
are: 

To derive a product-of-sums form of a function from a canonical truth 
table, write the AND (product) of each maxterm for which the function is 
false. Similarly, to derive a product-of-sums form for the complement of 
a function, write the AND of each maxterm for which the function is 
true. 

Applying these rules to the previous truth table, we have 

! 

Y= (A+B)  

! 

Y = (A+ B)•(A + B)•(A + B ) (1–13) 

The first equation agrees with Eq. (1–11), obtained by simplifying the sum-of-
products form in Eq. (1–10). With the aid of the distributive law, we may 
simplify Eq. (1–13) to yield 

! 

Y = A •B 
in agreement with Eq. (1–12). 

A maxterm is true for every row of the canonical truth table except one; we 
sometimes specify the maxterm by Mi, where i is the row number for which the 
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maxterm is false. For example, 

! 

(A + B + C )is true for every combination of 
values of variable except A = 1, B = 0, C = 1, which designates row 5 (binary 
101 = decimal 5). Maxterm M0 is (A + B + C), since only for variable values 
000 does the term produce a false value. The name maxterm connotes that the 
term is true for all but one set of variable values. We occasionally write 
canonical product-of-sums expressions, analogous to the sum-of-products 
formalism, as products of maxterms. For instance, the products of sums above 
become 

! 

Y = (A+ B ) = M1 

! 

Y = (A+ B)•(A + B)•(A + B ) = M0 •M2 •M3 

To illustrate the four rules for producing canonical equations, we derive the 
canonical equations for a function W of three variables: 

Row number J K L W 
0 0 0 0 0 
1 0 0 1 1 
2 0 1 0 1 
3 0 1 1 1 
4 1 0 0 0 
5 1 0 1 0 
6 1 1 0 0 
7 1 1 1 0 

Sum of products on true outputs: 

! 

W = J • K •L + J •K •L + J •K •L  (1–14) 

Sum of products on false outputs: 

! 

W = J • K •L + J • K •L + J • K •L + J •K •L + J •K •L  (1–15) 

Product of sums on false outputs 

! 

W = (J + K + L)•(J + K + L)•(J + K + L )•(J + K + L)•(J + K + L ) (1–16) 
Product of sums on true outputs: 

! 

W = (J + K + L )•(J + K + L)•(J + K + L ) (1–17) 

You should simplify each equation, using algebraic identities, and verify 
that the equations are equivalent. 

Truth Tables from Equations 
Sometimes you will wish to convert a logic expression into its truth-table form. 
If the expression is in sum-of-products form, the conversion is easy. Each 
product term will form one or more truth-table rows having, a true function 
value. A canonical product term (one with all the variables in it; a minterm) 
produces one row with an output of TRUE. A product term with fewer variables 
yields more rows, since such a term is true for any values of the missing 
variables. Often more than one product term in the sum will contribute truth for 
a given row of the truth table. This is fine, double truth is still truth! 
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As an example, consider this equation of three variables: 

  

! 

Y = J • K   +   J •K •L  +   J •K •L   +   K •L

      Term1      Term2         Term3           Term4

 

The truth table for this equation is 

J K L Y   
0 0 0 0   
0 0 1 0   
0 1 0 0   
0 1 1 1 (Terms 2 and 4) (1–19) 
1 0 0 1 (Term 1)  
1 0 1 1 (Term 1)  
1 1 0 1 (Term 3)  
1 1 1 1 (Term 4)  

Terms 2 and 3 are canonical; each contributes a true output to one row of the 
table. Terms 1 and 4, having a missing variable, contribute true outputs to two 
rows each. 

Equations in product-of-sums form are most easily translated into truth tables by 
focusing on the conditions for having false function values. Each sum term in 
the product will assure a false expression value whenever all its variables are the 
opposite of the form in the term. For example, consider the following equation 
of three variables: 

  

! 

G = (A + B + C) •(A + B) •(A + B + C )

          Term1        Term2       Term3
 

Term 1 makes G false for row 4 (100) of the truth table; term 3 produces a result 
of false for row 7 (111). Term 2, with its missing variable C, produces a result of 
false for two rows, 4 (100) and 5 (101). Terms 1 and 3 are canonical: each 
contributes a false function value for one row; term 2 is not canonical.  
Here is the truth table: 

Row 
number A B C Term 

1 
Term 

2 
Term 

3 G 

0 0 0 0 1 1 1 1 
1 0 0 1 1 1 1 1 
2 0 1 0 1 1 1 1 
3 0 1 1 1 1 1 1 
4 1 0 0 0 0 1 0 
5 1 0 1 1 0 1 0 
6 1 1 0 1 1 1 1 
7 1 1 1 1 1 0 0 

For logic expressions of more general form than the sum of products or the 
product of sums, we fall back on the ultimate method of deriving truth tables: 
evaluating the function for every combination of values of the input variables. 
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This means that we explicitly determine each function value. The process is 
often laborious, but (barring error!) is foolproof. For example, from the equation 

! 

K = (L + G)•(L + G) 
We get the following truth table by computing the value of K for each of the 
four sets of values of L and G: 

L G K 
F F T 
F T F 
T F F 
T T F 

Another approach for forming a truth table from a general Boolean equation is 
to manipulate the expression (usually using De Morgan's law) until it becomes a 
sum-of-products or product-of-sums form, and then use the methods presented 
earlier in this section. 

Condensing Truth Tables 

A canonical truth table of n input variables has 2n rows arranged in binary 
numerical order on its inputs, corresponding to all the possible values of the 
input variables. The canonical form explicitly displays the function's value for 
every possible set of input conditions. This form of truth table—the only one we 
have used so far—is the counterpart of the canonical forms of sum-of-products 
and product-of-sums equations. Just as we frequently use Boolean equations in a 
simplified form, we also sometimes wish to deal with a simplified or collapsed 
truth-table notation. 

Consider Eq. (1–18) again: 

  

! 

Y = J • K   +   J •K •L  +   J •K •L   +   K •L

      Term1      Term2          Term3        Term4

 

The canonical terms (2 and 3) each contribute one row to the canonical truth 
table in Eq. (1–19). Term 1, however, is independent of the value of variable L 
(L does not appear), so term 1 contributes two rows with true output to the 
canonical truth table, one for each value of the missing variable. If we are 
willing to abandon the canonical form for the truth table, we may introduce a 
shorthand notation for this situation. We collapse these two rows for term 1 into 
a single row and place an X for the value of the missing variable L. The X 
means "both values" and implies that the function value is independent of that 
variable whenever the other inputs are in their stated conditions. Similar 
arguments apply to term 4, which lacks the variable J. 



© Chap. 1 Describing Logic Equations 
 

16 

Applying this concept to the expression, we may derive a shortened truth table 

J K L Y   
0 0 0 0   
0 0 1 0   
0 1 0 0  (1–20) 
X 1 1 1 (Terms 2 and 4)  
1 0 X 1 (Term 1)  
1 1 0 1 (Term 3)  

Note how this truth table yields the original equation in a direct manner. 

The "X" is the truth-table equivalent of the important Boolean algebraic identity 
of Eq. (1–9) 

! 

A•B+ A •B " B  
There are various applications of this identity that we could introduce directly 
into the truth table of Eq. (1–20) if we desired. For instance, here are two more 
stages in the condensation of this table: 

J K L Y  J K L Y  
0 0 X 0  0 0 X 0  
0 1 0 0  0 X 0 0 (1–21) 
X 1 1 1  X 1 1 1  
1 0 X 1  1 X X 1  
1 1 0 1       

If we are presented with a truth table containing X's, the derived Boolean 
equation will not be canonical, but will contain some simplified terms. A sum-
of-products equation for the right-hand truth table in Eq. (1–21) is 

! 

Y= K •L + J 
Satisfy yourself that the original Eq. (1–18) is equivalent to this, and that all 
these truth tables based on Eq. (1–18) are equivalent. 

Condensed tables are convenient, since the original statement of a problem will 
often lead in a natural way to the condensing of rows. The main virtue of the 
notation is in allowing the truth table to reflect its origins more faithfully. A 
secondary virtue is in the resultant shortening. Attempts, as in Eq. (1–21), to 
simplify truth tables by collapsing rows of a less simplified form are tricky and 
can lead the inexperienced into errors. Soon we will discuss a graphical method 
for simplifying logic functions that is easier for people to use. 

Don't-Care Outputs in Truth Tables 
Truth tables have a useful property that a logic equation cannot express. We 
often know from the nature of the problem that the function's value is irrelevant 
for certain combinations of the input variables. This situation usually arises 
when we know that the inputs will never legitimately assume certain sets of 
values. We may use a small dash "–" for the truth-table function value in such 
cases. The "–" means "don't care." In deriving a logic equation from the truth 
table, we are free to use either a T or F value for the don't-care dash; whichever 
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will yield the more useful form. For instance, look at the condensed truth table 
below: 

A B Y 
F X T 
T F – 
T T F 

Of the various equations that we may derive from this truth table, a choice of T 
for the don't-care output might yield the sum-of-products form 

! 

Y= A+ A•B  
which can be simplified to 

! 

Y= A+B  
whereas a choice of F for the don't-care gives the quite different equation 

! 

Y= A 
You may use either equation; your choice may depend on other factors in the 
problem design. 

KARNAUGH  MAPS 
In the early years of digital computers, each logic element in a circuit was large 
and cumbersome by modern standards, and consumed considerable power. 
There was a natural emphasis on reducing the number of circuit elements to the 
bare minimum so as to cut the total cost. Designers developed many elaborate 
techniques for simplifying logic expressions, and much effort went into 
perfecting these tools. Today, hardware for digital logic is inexpensive, and in 
modern design work the emphasis on circuit minimization has given way to a 
concern for modularity and clarity in the design process. 

One result of this shift in technology and design style is that circuit building 
blocks have become larger and more powerful, while the "glue" that holds them 
together (the logic equations) has become simpler and less voluminous. 
Although the minimization of complex Boolean equations is no longer of 
paramount importance, simplification of small and manageable equations 
remains a routine task that we should make as easy and mechanical as practical. 
Manipulating equations through the Boolean algebraic identities, as we have 
done in the previous sections, is an arcane art. There are few guidelines to 
follow other than our intuition (based on experience) and trial and error. You 
have seen that sum-of-products is a common form of Boolean expression. This 
form results from truth-table derivations and occurs in other steps of our design 
process. The Boolean identity that is of most frequent use in simplifying sum-of-
products forms is Eq. (1–9), which allows the elimination of a variable and its 
complement when these have a common factor: 

! 

A•B  +   A •B  =   (A+ A )•B  =   T •B  =   B 
The Karnaugh map (commonly called a K-map, and also known as a Vietch 
diagram) is a graphic display whose visual impact assists us in the systematic 
application of this identity. A Karnaugh map is a canonical truth table 
rearranged in form. Figure 1–1 is a truth table and its K-map for an arbitrary 
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function of two variables. The Karnaugh map has a square for each truth-table 
row; each combination of variables identifies a square in the map. In the two-
variable case, the values of one variable appear as the labels for the columns, (B 
= 0 and B = 1 in Fig. 1–1), and the other variable's values mark the rows, (A = 0 
and A = 1). Each square contains the value of the given function (Yi) 
corresponding to the appropriate truth-table row, as specified by the labels on 
the edges of the K-map. For instance, the lower left square in the K-map of Fig. 
1–1, corresponding to A = 1, B = 0, has the function value Y2 

 
Row number A B Y 

0 0 0 Y0 
1 0 1 Y1 
2 1 0 Y2 
3 1 1 Y3 

 

 
Figure 1–1. A Truth Table and its Karnaugh map 

Functions of more than two variables also have K-map representations. Three 
and four-variable functions are easy to manage; with more than four variables, 
the K-map technique becomes unwieldy, but fortunately most of the 
simplifications of design equations that we encounter in practice involve no 
more than four variables. The three-variable map contains eight squares, 
corresponding to the eight rows in the canonical truth table. Figure 1-2 shows 
two notations for K-maps of three variables. Both forms are equivalent, and both 
are in common use. Our mild preference is for the left-hand form, but you 
should be familiar with each. We like the left-hand form because it has an 
explicit display of the values of the variables on each edge of the map. The 
right-hand form explicitly labels only the location of true values for each 
variable. Some people prefer this form; take your pick. Conventionally, the first 
variable (lefttmost in the truth table) appears on the vertical edge, while the 
horizontal edge displays the second and third variables 

 

 

 
Figure 1–2. Two forms of a K-map of three variables 

Note carefully the order of the labels on the top edge. In moving from square to 
square across a row (and around the corner, also), the value of only one variable 
changes at a time. As you will see, this unit distance property gives the K-map 
its virtue in simplifying logic expressions. 

Extending the K-map to four variables adds an additional variable to the vertical 
edge, resulting in 16 squares. Figure 1–3 illustrates both notations for Karnaugh 
maps of four variables. 
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Figure 1–3. Two forms of a K-map of four variables 

Building K-Maps 
There is a one-to-one correspondence between Karnaugh map squares and 
canonical truth-table rows. Deriving either the map or the table from the other is 
just a matter of rearranging the information. Don't-care outputs from truth tables 
are directly transferable to the appropriate K-map squares. Condensed truth-
table rows yield values for more than one K-map square, in an obvious way. 

We may view the K-map as a representation of the canonical sum-of-products 
form of a Boolean expression. Just as we may derive a truth table from a logic 
equation, we may move directly to a K-map from an equation, when this is 
appropriate. Figure 1–4 shows the three forms for a function of two variables. 

The techniques for creating a truth table from a logic equation will also yield the 
K-map for the equation. The expression in Fig. 1–4 is already in canonical form, 
so the transformations among table, K-map, and equation are easy.  

A B X 
0 0 1 
0 1 0 
1 0 1 

! 

X = A•B+ A•B  

 

1 1 0 

 

 
Figure 1–4. Three representations of a Boolean function 

Consider now the three-variable equation 

! 

V = A•B + B + A• B •C  
The first term in the sum yields l's in the K-map when A,B = 10 and C = 
anything. To give a true value, the second term requires B = 1, but A and C may 
be anything. The third term yields 1 for A,B,C = 101, which already appears in 
the map because of the A•B term. The resulting map is Fig. 1-5. 
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Figure 1–5. K-map for 

! 

V = A•B + B + A• B •C  

Simplifying with K-Maps 
Why bother with these maps? You may get a clue from Fig. 1–4. You have 
probably noticed that the expression for X can be simplified with Eq. (1–9): 

! 

X = A• B + A • B  

! 

= (A+ A )•B 

! 

= T • B  

! 

= B  
How does the K-map display this simplification? The key point is that a certain 
term (

! 

B  in this case) is ANDed with both A and 

! 

A . On the K-map this results 
in l's in both the A = 0 and A = 1 squares for B = 0. Let's circle these adjacent l's 
to remind us that the A variable disappears from the simplified expression 
because it appears as both A and 

! 

A  (see Fig. 1–6). Note how the simplified 
form A = 

! 

B  stands out more clearly: the condition for X to be true is that B is 
false (or 

! 

B  is true). Thus X = 

! 

B . 

 

 

 
Figure 1–6. Circling adjacent 1’s 

The drawing of circles (really ovals) among adjacent l's is the basis for using K-
maps in Boolean simplification. On K-maps of two variables, there are five 
ways to display applications of the basic identity of Eq. (1–9) with circles. 
Figure 1–7 shows these forms. 
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! 

A•B+A•B= A  

! 

A•B+A•B= A  

! 

A•B+A•B= B 

! 

A•B+A•B= B 

 
  

! 

A•B+A•B+A•B+A•B= T 2 term OR 4 term OR 

Figure 1–7. Simplifications for K-maps of 2 variables 
In using the K-map for simplification, we look for applications of the rules for 
circling. Depending on the position of the l's, we may have several circles, each 
spanning a grouping of one, two, four, eight.... 1's. The K-map method requires 
that each 1 in the map appear in at least one circle, even if it is by itself. Circling 
two l's causes two canonical terms to collapse into one term; one variable drops 
out. Four circled l's bring four terms into one term, eliminating two variables. A 
proper group of eight circled l's drops three variables, and so on. 

On K-maps of three or more variables, some applications of the simplifying 
identity do not involve physically adjacent l's. In these cases, we must draw 
"around-the-corner" circles. Figure 1–8a shows some typical ordinary circle 
patterns for a K-map of three variables; Fig. 1–8b gives all the around-the-
corner patterns of two 1's; and Fig. l-8c shows the only around-the-corner 
pattern involving four l's. 

   
(a) (b) (c) 

Figure 1–8.  Typical circlings for 3-variable K-maps 

Figure 1–9 shows three improper circlings. Diagonal or L-shaped arrangements 
do not correspond to applications of Eq. (1–9), nor does the circling of three 1's, 
since 3 is not a power of 2. 

 Figure 1–9.   Improper K-map circlings 
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K-maps of four variables are similar to the three-variable variety. Figure 1–10 
shows some forms involving correct circlings of four and eight 1's. You should 
inspect these patterns until you are comfortable with their meaning. 

   
Figure 1–10. Typical 4&8 circlings on 4-variable K-maps 

Here is the prescription for circling l's in a K-map: Draw circles (ovals or 
around-the-corner patterns) around properly positioned collections of l's, starting 
with the largest possible circles, and working toward smaller circles. 
Overlapping circles are appropriate when they allow a larger circle to appear. 
(Do not draw a circle that is completely within a larger circle; this would result 
in a redundant term and an incompletely simplified function.) Drawing the 
largest circles possible, cover all the l's on the map. Use don't-care dashes "–" as 
either a 1 or a 0, as convenient. The point of using K-maps is to let the drawing 
display the simplified result in a systematic and mechanical fashion. When you 
have finished drawing circles, read off the simplified function as a sum of 
products, in which each circle contributes one product term to the sum. 

Figure 1–11 shows two examples of functions of two variables, derived from 
their K-maps. Figure 1–11b yields no simplification. 

  

! 

X= H 

! 

Y= A•B+A•B 
(a) Simplifies (b) Does not simplify 

Figure 1–11. Simplifiable and unsimplifiable functions of 2 variables 

The K-map method allows a simple derivation of the important identity of Eq. 
(1–8); Fig. 1–12 shows the process. 

 Figure 1–12.   Proof of identity 

! 

A+A•B= A +B 
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Figure 1–13 shows the simplifications of two functions of four variables. Notice 
the use of overlapping circles to achieve the largest circles. Some l's must be 
circled by themselves, yielding unsimplified four-variable terms. 

 ! 

X= M•N•P•Q + M•N•P•Q

+N•P•Q + M•N•P + N•P•Q

 

 
! 

Y= B+C+A•D 

Figure 1–13. Simplification of two functions of four variables 

K-Map Simplification Blunders 

The most common error in simplifying expressions with K-maps is to fail to 
circle the largest possible groupings of l's. A less common error is to introduce a 
redundant smaller circle within a larger one. Figure 1–14 shows some typical 
blunders and the correct forms. Although Figs. 1–14a and 1–14c produce correct 
Boolean expressions, these expressions are not as simple as the K-map method 
allows. Design criteria may sometimes require the use of an incompletely 
simplified form, but these occasions are rare and we will not consider them here. 
Make all your circles as large as possible. Figure 1–14a has four circling errors: 
two incomplete circlings and two redundant circles. Figure 1–14c has three 
errors, all incomplete circlings. 
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(a)  (b) 

 

 

 
(c)  (d) 

Figure 1–14. Common blunders in circling K-maps 

Other Ways of Reading K-Maps 

We have stressed the method of circling l's and reading a sum of products for the 
function. If you are interested in developing the best facility with K-maps, you 
will want to investigate three other interpretations. These are analogous to the 
forms for reading expressions from truth tables shown earlier in this chapter. We 
give the three additional K-map methods below, with one example, leaving a 
comprehensive study of these techniques as grist for your mental mill.  

(Hint: sums naturally emphasize 1’s, products emphasize 0’s.) 
Method 1: Circle l's and read a sum of products for the function (the 

normal method). 
Method 2: Circle 0's and read a sum of products for the inverse of the 

function (also a frequently used method). 
Method 3: Circle 0's and show a way to generate a product of sums for the 

function. 
Method 4: Circle l's and show a way to generate a product of sums for the 

inverse of the function. 
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Figure 1–15a shows a K-map with l's circled; Fig. 1–15b is the same map with 
0's circled. The resulting equivalent simplified forms of the function are: 

  
(a) Circling 1’s (b) Circling 0’s 

Figure 1-15. 

 

From method 1: 

! 

S = A•B+B•C  

From method 2: 

! 

S = B+ A•C 

From method 3: 

! 

S = B•(A+C) 

From method 4: 

! 

S = (B+ A)•(B+C) 

CONCLUSION 

You now have the knowledge of the foundations of digital logic that you need to 
continue your introduction to digital design. Boolean algebra and its allied 
techniques are a fascinating field of study, and you may wish to pursue these 
topics in more depth as your skill as a designer grows. We have just scratched 
the surface of the field, but the information in this chapter is sufficient for our 
purposes. Going deeper would deflect us from our goal, which is to build up the 
necessary tools as rapidly as possible in so you may quickly reach the study of 
the design process in later parts of the book. 

Now it is time to develop tools for systematically translating logic expressions 
into hardware. 
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EXERCISES 

1-1. Read the preface. 

1-2. Look up Boole, Karnaugh, and Shannon in (www.wikipedia.com) 

1-3. What are the basic logical operators in digital design? What are the 
constants? What does the numeral 1 mean in digital design 

1-4. How many different Boolean functions of two variables are there? Of 
three variables? Derive an expression for the number of different 
Boolean functions of n variables. 

1-5. What is a canonical truth table? Give examples of a canonical truth 
table and a non-canonical truth table of three variables. 

1-6. Give the operator hierarchies for AND, OR, and NOT. By inserting full 
parenthesis, show the order of evaluation of these functions: 

(a)   

! 

B • A •C + D + E  

(b)   

! 

A + B •C + D  

(c)   

! 

A + B •(C + D) 

1-7. By using the operator hierarchies, write the following expressions with 
as few parentheses as possible. 

(a)   

! 

((Q + (R •S))+ U • V)  

(b)   

! 

((Q •(R + S)) •(U + V)) 

1-8. Prove the following identities by writing truth tables for both sides. 

(a)   

! 

A •(B+ C) " (A •B) + (A •C) 

(b)   

! 

A + (B•C) " (A + B) •(A + C) 

(c)   

! 

A " A  

(d)   

! 

A •B •C " A + B + C  

(e)   

! 

A + B + C " A • B • C  

(f)   

! 

A + A •B " A + B  
(g)   

! 

A •(A + B) " A  
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1-9. The cancellation law of regular algebra states that 

! 

If X (+) Y= X (+) Z, then Y= Z  

Show by giving counter examples that Boolean algebra has no 
equivalent cancellation law. In other words show the following 
statements are false: 

! 

If X+ Y= X+ Z, then Y= Z

If X •Y= Z•X, then Y= Z
 

1-10. NAND and NOR are Boolean functions used in design. NAND (NOT 
AND) is defined as AND followed by NOT; NOR (NOT OR) is 
defined as OR followed by NOT. Write the defining truth tables for A 
NAND B and A NOR B. 

(a) Write each of the following expressions in a form that has no 
AND operators: 

  

! 

(A + B) •C    

! 

A •B •C + B •D 

(b) Write each of the following expressions in a form that has no OR 
operators: 

  

! 

A + B + C    

! 

A + B + C •D + E  
1-11. Define the following terms: 

(a) Canonical 
(b) Minterm 
(c) Maxterm 
(d) Sum-of-products form 
(e) Product-of sums form 
(f) Canonical sum-of-products form 
(g) Canonical product-of sums form 

1-12. Which of the following expressions is in sum-of-products form? Which 
is in product-of-sums form 

(a)   

! 

A + B •D  

(b)   

! 

C • D •E + F + D  
(c)   

! 

(A + B) •C 
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1-13.  
(a) Write a four-element vector describing the function X(A,B): 

A B X 
F F F 
F T T 
T F F 
T T F 

(b) Derive a logic equation for X directly from the truth table 
(c) Derive a logic equation for X directly from your vector 

expression 
(d) Show that the results from parts (b) and (c) are equivalent 

1-14. Without formally deriving any logic equations, deduce the value of 
each function W, X, Y, and Z 

A B C W X Y Z 
0 0 0 0 1 0 1 
0 0 1 0 1 0 0 
0 1 0 0 1 0 1 
0 1 1 0 1 0 0 
1 0 0 0 1 1 1 
1 0 1 0 1 1 0 
1 1 0 0 1 1 1 
1 1 1 0 1 1 0 

1-15. Write the logic equations corresponding to the following 

(a)     

! 

X(A,B,C) = m0 + m2 + m5  

(b)     

! 

X(P,Q) = M1 •M3  

1-16. Write the canonical truth tables for each of the following: 

(a)     

! 

Y(V,W,X) = M2 •M3 •M5 •M6  

(b)     

! 

Y(C,B,G) = m1 + m2 + m7  

1-17. Show that Eq (1–13) reduces to   

! 

Y = A •B: 

(a) By using Boolean algebraic reductions 
(b) By developing the canonical truth table for each sum in Eq. 

(1–13) then performing the AND of the truth-table function 
values to produce a truth table for   

! 

Y , and finally reading 
the sum-of–products logic equation for   

! 

Y  from the truth 
table 
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1-18. Consider the following truth table: 
A X YZ G 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 0 

Derive canonical equations for G and in the following forms: 
(a) Sum-of-products on true outputs. 
(b) Sum-of-products on false outputs. 
(c) Product-of-sums on true outputs. 
(d) Product-of-sums on false outputs. 

1-19. Prove the correctness of your answers to Exercise 1–20 by 
reconstructing a truth table for G from each equation 

1-20. Consider the following canonical truth table for two functions S and C: 
P Q R S C 
0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 

(a) Express S and C as eight-element vectors. 
(b) Working directly from the vectors, write a canonical sum-of-

products equation for S and a product-of-sums equation for   

! 

S . 
Show the equivalence of the equations by Boolean algebraic 
manipulations. 

(c)  Repeat part (b) for functions C and   

! 

C . 
(d) Directly from the truth table, write a vector for the function S•C. 

Working from the vector, give a logic equation for   

! 

S•C . 
(e) Repeat part (d) for the function S + C. 

1-21. By Boolean algebraic transformations, show the equivalence of the 
forms in Eqs. (1–14) through (1–17). 

1-22. Express Eqs. (1–14) through (1–17) using the minterm and maxterm 
notations.  

1-23. Explain the use of X for "both values" and – for "don't care" in truth 
tables 
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1-24. Derive the canonical truth tables that correspond to each of the 
following K-maps: 

 

 

 
1-25. Plot the function in Exercise 1–20 on two K-maps, one map labeled as 

in Fig.1–2a and the other as in Fig. 1–2b. Simplify the function if 
possible 

1-26. Draw a K-map for each of the truth tables below. Derive a simplified 
logic equation from each K-map. 

A B C M  A B C M  A B C D M 
0 0 0 1  0 0 0 1  0 X 0 X 1 
0 0 1 1  0 0 1 1  0 X 1 1 0 
0 1 0 1  0 1 0 0  0 0 1 0 - 
0 1 1 1  0 1 1 0  X 1 1 0 0 
1 0 0 1  1 0 0 −  1 0 0 0 1 
1 0 1 −  1 0 1 1  1 X X 1 − 
1 1 0 0  1 1 0 0  1 0 1 0 1 
1 1 1 0  1 1 1 0  1 1 0 0 0 

1-27. Here is a K-map for a function S:   

 
 

By circling zeros, give a logic equation for   

! 

S as a sum of products with 
each product term containing two variables. 

1-28. By circling zeros, simplify the functions in Fig. 1–13. 
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1-29. Assuming that there are three inputs A, B, and C, write a truth table to 
describe each of these ideas: 

(a) The output should be true only when two or more of the input 
variables are true 

(b) The output should be true only when the number of true input 
variables is odd. 

(c) The output should be true only when the number of false input 
variables is even. 

(d) The output should be false only when exactly two of the input 
variables are true. 

1-30. Simplify the functions derived in Exercise 1–29, using K-maps. 

1-31. Often the natural formulation of a logic function is not in perfect sum-
of-products or product-of-sums form. For example, consider the 
equation   

! 

M = A •(B + C) + A •C Simplify this equation using two 
different K-map circlings. Are the resulting sum-of-products forms less 
compact or more compact than the original? (A criterion for 
compactness is the number of binary AND and OR operators in the 
expression.) Can you perform elementary factorings on the K-map 
results that make the results more compact? Compare the original 
equation with each of the final equations. 

1-32. Consider two 2-bit binary numbers, say, A,B and C,D. A function X is 
true only when the two numbers are different. 

(a) Construct a truth table for X. 

(b) Construct a four-variable K-map for X, directly from the word 
definition of X. 

(c) Derive a simplified logical expression for X. 

1-33. You are installing an alarm bell to help protect a room at a museum 
from unauthorized entry. Sensor devices provide the following logic 
signals: 

ARMED  = The control system is active  
DOOR    = The room door is closed 
OPEN     = The museum is open to the public  
MOTION = There is motion in the room 

Devise a sensible logic expression for ringing the alarm bell. 

1-34. A large room has three doors, A, B, and C, each with a light switch 
that can turn the room light on or off. Flipping any switch will change 
the condition of the light 

(a) Assuming that the light is off when the switch variables have the 
values 0, 0, 0, write a truth table for a function LIGHT that can 
be used to direct the behavior of the light. 

(b) Derive a logic equation for LIGHT. 
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(c) Can you simplify this equation? 

(d) How is this exercise related to Exercise 1–31? 

1-35. Electronic watches display time by turning on a certain combination of 
seven light-bar segments to yield approximations of the shape of the 
decimal digits. For each digit position, the segments are labeled as 
follows: 

 
 The decimal digit displays have the form 

          
For example, the digit 4 has segments b, c, f and g lighted. Internally, 
the watch represents a decimal digit by a 4-bit binary code, say, 
D,C,B,A. For example 

  D C B A 
7 = 0 1 1 1 

(a) Develop a multi-output truth table for lighting the segments. 
The truth table will have inputs D, C, B, and A, and outputs a ,  
b ,  c ,  d ,  e ,  f, and g. Notice that don't-care conditions arise 
naturally, since 4 bits can encode 16 combinations, whereas the 
decimal digits use only 10 of them. Binary codes above 1001 
will never occur. 

(b) Plot the light segment outputs a through g on four-variable K-
maps, and derive a simplified equation for each segment. 

1-36. The university pool room has four pool tables lined up in a row. 
Although each table is far enough from the walls of the room, students 
have found that the tables are too close together for best play. The 
experts are willing to wait until they can reserve enough adjacent tables 
so that one game can proceed unencumbered by nearby tables. A light 
board visible outside the poolroom shows vacant tables. The manager 
has developed a digital circuit that will display an additional light 
whenever the experts' desired conditions arise. Give a logic equation 
for the assertion of the new light signal. Simplify the equation, using a 
K-map. 


