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The construction of most digital systems is a large task. Disciplined 
designers in any field will subdivide the original task into manageable 
subunits—building blocks—and will use the standard subunits wherever 
possible. In digital hardware, the building blocks have such names as 
adders, registers, and multiplexers. 

Logic theory shows that all digital operations may be reduced to elementary 
logic functions. We could regard a digital system as a huge collection of 
AND, OR, and NOT circuits, but the result would be unintelligible. We need 
to move up one level of abstraction from gates and consider some of the 
common operations that digital designers wish to perform. Some candidates 
are: 

(a) Moving data from one part of the machine to another. 
(b) Selecting data from one of several sources. 
(c) Routing data from a source to one of several destinations. 
(d) Transforming data from one representation to another. 
(e) Comparing data arithmetically with other data. 
(f)  Manipulating data arithmetically or logically, for example, summing 

two binary numbers. 

We can perform all these operations with suitable arrangements of AND, 
OR, and NOT gates, but always designing at this level would be onerous, 
lengthy, and error-prone. Such an approach would be comparable to 
programming every software problem in binary machine language. Instead, 
we need to develop building blocks to perform standard digital system 
operations. The building blocks will allow us to suppress much irrelevant 
detail and design at a higher level. The procedure is analogous to giving the 
architect components such as doors, walls, and stairs instead of insisting that 
they design only with boards, nails, and screws. 

INTEGRATED CIRCUIT COMPLEXITY 

In Chapter 2, you studied low-level building blocks—AND, OR, and NOT. 
Upon your first encounter with digital logic you will be largely concerned 
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with this level of complexity and you must master it before proceeding. It is 
helpful if you use a logic simulator for digital drafting to produce and debug 
your circuit schematics; we highly recommend integrating simulators into 
your learning environment and list some in the references. 

But, design at the Boolean equation level, while a  necessary skill, is not the 
same as designing digital systems; now you will need higher level 
constructs, like (a)–(f). Unfortunately, there are no well accepted names for 
devices at this abstraction level; you will often see them referred to as MSI 
(medium-scale integration) devices, but this is a hold over from older 
technology where these were packaged as small integrated circuit chips. It is 
best to think of them in terms of their names, which, fortunately, do reveal 
their function. (if your background is primarily software, think of them as 
macro’s) Most simulators will have libraries of commonly used mid-level 
abstractions and you must now become adept at designing at this level. 

The digital designer should try to design at the highest conceptual level 
suitable to the problem, just as the software specialist should seek to use 
prepackaged programs or a high-level language instead of assembly 
language when possible. In software programming, the accomplished 
problem solver has not only a knowledge of C, C++, and functional 
languages, but also of computer organization, system structure, assembly 
language, and machine processes. Similarly, to achieve excellence in solving 
problems with digital hardware, we need skill in using all our tools, from the 
elementary to the complex. 

COMBINATIONAL BUILDING BLOCKS: Combinational and 
Sequential Circuits 

In this chapter, we will develop a set of building blocks that have hardware 
implementations of mid-level complexity, which have no internal storage 
capacity, or "memory". Such circuits, with outputs that depend only on the 
present values of the inputs, are called combinational. The important class of 
circuits that depend also on the condition of past outputs is called sequential. 
We will present sequential circuits and sequential building blocks in Chapter 
4. 

The Multiplexer 

A multiplexer is a device for selecting one of several possible input signals 
and presenting that signal to an output terminal. It is analogous to a 
mechanical switch, such as the selector switch of a stereo amplifier (Fig. 3–
1). The amplifier switch is used for selecting the input that will drive the 
speaker. Except for the moving switch contact, the electronic analog is easily 
constructed. We use Boolean variables instead of mechanical motion to 
select a given input.  
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Figure 3–1. A mechanical selector switch 

Consider a two-position switch with inputs A and B and output Y, such as 
shown in Figure 3–2. Introduce a variable S to describe the position of the 
switch and let S = 0 if the switch is up and S = 1 if the switch is down. A 
Boolean equation for the output Y is 

! 

Y = A•S+ B•S 
Using this equation, we can build an electronic analog of the switch; Fig. 3–
2 is one design. There, S is the select input. The common name for this 
device is a 2-input MUX.  

 
  

A 2-position 
mechanical 

switch 

Implementation of the 2-input 
MUX 

Symbol for 2-input 
MUX 

Figure 3–2. different representations of a 2-input MUX 

Most libraries will have a wide selection of more capable MUX’s, usually 
including: 2,4,8,16-inputs with inverting, non-inverting, strobe enabled, and 
tri-state enabled, outputs—see Figure 3–3. Unfortunately, strobed and tri-
state enabled MUX’s often have identical symbols and you will have to 
experiment with a simulator to find out which is which—very inconsiderate! 
Further, the MUX symbol itself is not standardized; we will use the diamond 
shape since it explicitly displays the direction of data movement. 
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Inverting MUX 

 

! 

Y = D0•S+D1•S  

Strobed MUX 

 

! 

Y = (D0•S+D1•S)•STROBE  

Tri-State MUX 

 

! 

Y(Tri" State)= (D0 •S+D1•S)•En  

Figure 3–3. Various MUX flavors 

If we desire to select an output from among more than two inputs, the 
multiplexer must have more than one select input. The select inputs to a mux 
form a binary code that identifies the selected data input. One select line has 
21 = 2 possible values; two select lines allow the specification of 22 = 4 
different values. For instance, if we have select lines S1 and S0, the pair S1, 
S0 represents a binary number that may identify one of four possible inputs. 
Common symbols for a 4-input mux are shown in Figure 3–4. 

D3
D2
D1
D0

S0
S1

Q

 

= 

 

= 

 

Figure 3–4. Drafting symbols for 4-input MUX’s 

Making big ones out of little ones 

Static CMOS gates are limited to 3 or 4 inputs, which, in turn, limits the 
number of mux inputs. We need ways of combining small mux’s to create 
wider devices. Figure 3–5 shows combining strategies for mux’s with 
standard, strobed, and tri-state outputs 
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Non-Enabled MUX’s 

 

Strobed MUX’s 

 

Tri-State MUX’s 

Figure 3–5. Making 4-input MUXs from 2-input MUX’s 

We leave it as an exercise to justify the different merging elements, (mux, 
OR gate, or tri-state), used in these circuits. Of course you can apply similar 
techniques starting with wider mux’s, as shown in Figure 3–6, to synthesize 
a 32-input mux from 8-wide tri-state mux’s. 

 
Figure 3–6. Synthesizing a 32 input mux from smaller tri-state mux’s 
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The gates driving the tri-state enables have been carefully configured so only 
one enable is true at a time—a critical consideration in tri-state logic. 
Another common convention is to use terminals connected by symbolic 
wires. Thus, an implied wire connects all terminals labeled S0, this preserves 
connectivity while eliminating lots of clutter. 

The conventional symbol for a multiplexer shows the inputs as having T = 
H, but the output may be either high—or low-active, depending on the 
particular gate implementation. As mixed logicians, we realize that we may 
present all the inputs in T = L form without affecting the circuit; then the 
output will be of opposite polarity to that in the conventional symbol for the 
device. In Fig. 3–7 we show the equivalent mixed-logic forms for 4-input 
Multiplexers. Changing the polarity of the inputs affects all the input lines 
and the output (all the data paths) but has no effect on the selection or 
enabling systems. 

 

 
Figure 3–7. Multiplexer mixed-logic equivalent forms 

The multiplexer select code represents an address, or index, into the ordered 
inputs. We may view the data inputs to the mux as a vector or table, and the 
select lines as an address. A multiplexer is thus a hardware analog of a 1-bit 
software "table look-up." Figure 3–8 illustrates the analogy. In systems 
design, table look-up is an important concept that hardware designers have 
not exploited to the same extent as programmers. In subsequent chapters, 
you will see many powerful uses of this concept. When you are faced with 
selecting, looking up, or addressing one of a small number of items, think 
MUX. 
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Figure 3–8. A hardware analog of a software table lookup. A single 
multiplexer provides a 1-bit lookup. Several multiplexers addressed by a 
common signal form a multi-bit lookup. 

The Demultiplexer 

A de-multiplexer, (dmux), sends data from a single source to one of several 
destinations and is the logical inverse of a multiplexer. Whereas the 
multiplexer is a data selector, the de-multiplexer is a data distributor or data 
router. A mechanical analog is the switch used to route the power amplifier 
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output of an automobile radio either to a front or a rear speaker, as illustrated 
in Fig. 3–9. This switch is the same type of two-position mechanical switch 
shown in Fig. 3–1. A mechanical switch can transmit a signal in either 
direction, whereas the electronic analog can transmit data in only one 
direction. Since we cannot use a multiplexer in the reverse direction, we are 
forced to provide a de-multiplexer to handle this operation. 

 
Figure 3–9. A mechanical distributor switch 

The Boolean equations for the switch in Fig. 3–9 are: 

! 

Front _ spea ker = OUT • S

Re ar _ spea ker = OUT • S
   (S = T when the switch is down). 

The electronic gate equivalent of these equations is so simple that you are 
unlikely to find it in your library. 

The drafting symbol for the dmux is simply the reversed image of the 
multiplexer which nicely displays the dmux’s inverse mux behavior. The 
equations and symbol for a 4-wide dmux are: 

! 

Y0 = S1•S0 •G

Y1= S1•S0 •G

Y2 = S1•S0 •G

Y3= S1•S0 •G

 

 
Figure 3–10. Equations and symbol for a dmux 

To summarize, the de-multiplexer building block routes a single source to 
one of several destinations. A routing code is supplied to the control inputs 
to select the destination. 

The Decoder 

In digital design, we frequently need to convert an encoded representation of 
a set of items into an exploded form in which each item in the set has its own 
signal. The concept of "encoded information" pervades our lives. Encoding 
is a useful way of specifying a single member of a large set in a compact 
form. For instance, every decimal number is a code for a particular member 
of the set of natural numbers. In everyday affairs, we usually do not need to 
decode the code explicitly, but sometimes the decoding becomes necessary. 

Suppose you walk into a store in a foreign country to buy a coffee cup. You 
choose a cup on the shelf, so you tell the clerk that you want the fourth cup 
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from the left. You have used a code (4) to identify the desired cup, but the 
clerk does not know English and cannot pick out the correct cup. Since the 
clerk is unable to decode your "4" into a specific item, you point to the cup. 
Your pointed finger means "This one." You were forced to decode your 
code. 

Whenever we use a number to designate a particular object, decoding must 
occur. Usually, we do this implicitly or intuitively, without thinking about it, 
but sometimes, as in the china shop, the decoding becomes very explicit. 

In hardware, codes are frequently in the form of binary numbers and, in most 
cases, the decoding required to gain access to an item is buried within a 
building block. For example, an 8-input multiplexer has a 3-bit select code 
to specify the particular input. We purposely include within the mux the 
decoding of the select code—the mux building block contains the circuitry 
to translate "input 4" on the control lines to "this input." 

In computer programming we specify a memory location by giving its 
address. In the hardware (the memory unit of the computer), this numeric 
address must be decoded to gain access to the particular memory cell. 

Another common use of codes is in the operation code of a typical computer 
instruction. Most computers allow only one operation to be specified in each 
instruction, and the operation code describes the particular operation. In the 
laboratory accompanying this book you will study the art of digital design 
and will participate in the design of two minicomputers. The first is small 
enough, and simple enough, for new initiates to digital design to finish and 
verify in a reasonable time. The second is a widely used commercial 
microcomputer for the more advanced student. In both examples, and indeed 
for every computer, an operation code determines which instruction to 
execute, and is clearly of a, “do this one”, type of operation—in other words 
the operation code must be decoded 

The first project is modeled after the PDP-8, which has a 3-bit operation 
code field specifying one of eight possible operations. For now we will call 
the 3 bits of this field C, B, and A. The operation codes and their instruction 
mnemonics are: 

Bits Operation 
code C B A Instruction 

0 0 0 0 AND 
1 0 0 1 TAD 
2 0 1 0 ISZ 
3 0 1 1 DCA 
4 1 0 0 JMS 
5 1 0 1 JMP 
6 1 1 0 IOT 
7 1 1 1 OP 

From the viewpoint of the computer programmer, the decoding of the 
operation code is buried inside the computer. But we are studying hardware 
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design, and we must face the decoding problem squarely. To implement this 
instruction set, we require eight logic variables (AND ... OP) to control the 
specific activities of each instruction. Only one of these eight variables will 
be true at any time. The translation from the operation code into the 
individual logic variables is a decoding. We could build the decoding 
circuits from gates, using the methods of the previous chapters. For instance, 
the logic equations for two of the variables are 

  

! 

TAD = C•B• A

JMS = C •B • A

 

Decoding is so common in digital design that our appropriate posture is to 
package the decoding circuitry into a logical building block. The decoder 
building block has the characteristic that only one output is true for a given 
encoded input and the remaining outputs are false. Most libraries will 
include decoders with a selection of output widths; some circuit design 
programs also allow you to tailor decoders to your own specifications, in the 
spirit of macro’s in a software macro assembler. You need to exercise 
restraint with decoders, for every additional input bit the number of outputs 
doubles, (3 inputs = 8 outputs, 4 inputs = 16 outputs, 5 inputs = 32 outputs, 
…..). A typical library symbol for an 8-wide decoder would be: 

Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0

S0
S1
S2

EN

 
Most decoders use NAND gates to decode input bit patterns and thus 
generate low active outputs when En=T; when En=F, all outputs go F. 

The Encoder 

The inverse of the decoding operation is encoding—the process of forming 
an encoded representation of a set of inputs. This operation does not occur in 
digital design as frequently as decoding, yet it is of sufficient importance to 
be a candidate for one of our standard building blocks. In strict analogy with 
decoding, we should require that exactly one input to an encoder be true. 
Since there is no way that an encoder building block can enforce this 
restriction on input signal values, encoders always appear in the form of 
priority encoders. This variation, which is more useful than the regular 
encoder, allows any number of inputs to be simultaneously true, and 
produces a binary code for the highest numbered (highest-priority) true 
input. 

A well-designed priority encoder should provide some way to denote a 
situation in which no input is true. There are two approaches to this problem. 
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Method 1 is to number the input lines beginning with 1 and reserve the 
output code 0 to indicate that no inputs are true. Method 2 is to number the 
inputs beginning with 0, but provide a separate output signal that is true only 
when no input is true. The first method requires fewer output lines but uses 
up a code pattern to indicate no active inputs. The second method requires 
an extra output but allows all the code values to represent true conditions at 
the input. 

As a small illustration of priority encoding, consider circuits that produce a 
2-bit code from a set of individual inputs. The first method will handle only 
3 input lines, whereas the second method accommodates 4 inputs. Here are 
truth tables for the two styles of priority encoders. Remember, X in the truth 
table means "both values" and – means "don't care". Priority truth tables are 
one of the few times the “X” notation is useful, leading to drastically 
compacted truth tables. 

Method 1  
 Method 2 

D3 D2 D1 B A  D3 D2 D1 D0 B A W 
0 0 0 0 0  0 0 0 0 - - 1 
0 0 1 0 1  0 0 0 1 0 0 0 
0 1 X 1 0  0 0 1 X 0 1 0 
1 X X 1 1  0 1 X X 1 0 0 
      1 X X X 1 1 0 

Equations for the output variables can be derived by the methods described 
in Chapter 1. For instance, the logic equations for the outputs for method 2 
are: 

! 

B = 1XXX +01XX

A= 1XXX+ 001X

W = 0000

 

Many libraries will not include priority encoders and you may have to 
fashion you own, but doing so in this framework will organize your efforts 
and clarify your designs. 

As is often the case with hardware, we can devise serial or tree based 
priority encodes. Linear designs are simple, readily extensible to many 
stages, but have delays that are proportional to the number of stages. Tree 
based solutions usually take more hardware but have delays that grow as the 
logarithm of stage length and may thus be preferable for larger priority 
chains. 

A linear solution for a type 2 encoder is shown below. Consider a priority 
chain where each module accepts a priority-in signal from its neighbor 
upstream and passes priority-out to its neighbor downstream, unless there is 
a priority request. Figure 3–11 is the schematic for the first 4 elements of 
such a chain. 
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Figure 3–11. Serial priority chain 

Module logic is given by this equation: 

  

! 

pri.out = pri.in • req  
It is clear that the leftmost active request will inhibit all requests to its right, i.e. 
the leftmost active request has priority. When used in a software setting, 
operating systems will sometimes wish to disable the priority chain; something 
easily done by priming the leftmost module with a “F” instead of “T”. 
A tree based solution is shown in figure 3-12. In deriving this solution it is 
helpful to view the topmost module as one that divides the priority chain in half, 
enabling the proper half by presenting enabling “G” signals to lower tier 
modules. Request signals percolate upward, pruning lower priority requests on 
the way until only the highest priority request reaches the top module. The 
surviving request leaves a trail which guides the grant signal moving downward 
to the lowest tier, thus identifying the highest priority request. (Each module 
must be identical so they can be used in recursive descent to construct trees of 
arbitrary depth.) 

 
Figure 3-12. A tree based priority chain 

Module logic is given by equations: 
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! 

Rout = R1+R0

G1= R1•Gin

G0 = R1•R0 •Gin

 

Priority encoders are frequently used in managing input-output and interrupt 
signals. The encoder produces a code for the highest-priority true signal. 
This code may serve as an index for branching or for table lookup in a 
computer program. 

The Equality Comparator 

Comparators help us to determine the arithmetic relationship between two 
binary numbers. Occasionally, we need to compare one set of n bits with 
another reference set of n bits to determine if the first set is identical to the 
reference set. The proper way to determine identity is with a logical 
COINCIDENCE operation. For instance, to find if a single bit A is identical 
to a reference bit B, we use 

! 

A.EQ.B = A" B Eq. (3–1) 

For a pattern of n bits, we need the logical AND of each such term: 

  

! 

A.EQ.B = (An"1# Bn"1 )•(An"2# Bn"2 )•!•(A0# B0) Eq. (3–2) 

We can make an important distinction based on whether the reference set of 
bits is unvarying, (a constant), or a varying pattern. 

Expanding the single-bit Eq. (3–1) into its AND, OR, NOT form, 
we have 

! 

A .EQ. B = A•B+ A•B 

If B is constant, this equation can be simplified into one of two 
forms: 

! 

A .EQ. B = A if B = T  

! 

A .EQ. B = A if B = F  

Consider a comparison of an arbitrary 4-bit A with a fixed 4-bit B = 1,0,0,1. 

Equation (3–2) can be reduced to 

! 

A .EQ. B = A3 •A2 •A1 •A0 
which can be realized with a 4-input AND element. 

If the reference pattern is not fixed, we are stuck with Eq. (3–2).  
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Figure 3–13. 4-bit equality circuit 

Wider equality circuits can be handled either serially or by tree structures. A 
serial compare is just a slight modification of the serial priority logic; a 4-bit 
equality chain is shown in Figure 3–14.  

 
Figure 3–14. A serial compare circuit for two 4-bit numbers 

Module logic for a block is: 

! 

eq.out = eq.in •(Ai " Bi ) and the circuit is 
readily extended to an arbitrary number of stages. The only reason for 
including it in our discussion is to point out that it distributes the AND of 
figure 3–13 into a number of 1-bit AND’s. Unfortunately, while the circuit is 
simple, delay will be proportional to the number of stages; if speed is 
important tree structures will be faster. 

Assuming we have a 4-bit equality module, as in figure 3–13, we can use 
them to form a 16-bit tree structured equality comparison as shown in figure 
3–15 

 
Figure 3–15. A tree structured 16-bit equality circuit 

Now that we have a 16-bit compare modules we could tree them to form 32 



Chapter 3 Building Blocks for Digital Design 15 

or 64-bit compares. Circuit complexity is not that much greater than for the 
serial compare and the speed is much faster. 

The Magnitude Comparator 
If two numbers are not equal then one must be bigger than the other. There are 
various ways of attacking the magnitude comparator problem; serial ripple 
solutions, and faster parallel ones. 

Lets consider two n-bit binary numbers, A and B, and a serial circuit that will 
return 3 signals A>B, A=B, A<B. Start at the most significant bit (why?). There 
are 4 possibilities for that bit, and that can lead us to an algorithm. 

An-1 Bn-1  
0 0 test next bit position on right 
0 1 A<B 
1 0 A>B 
1 1 test next bit position on right 

If (An-1=Bn-1) then we must look at bit position n-2 and so on, considering each 
bit position in turn as we progress to lower order bits until we find a pair that 
differ. We then immediately know that A>B or A<B and that must be passed 
down through all downstream modules. If we get all the way to the low order bit 
position without finding a pair that differ then we know that A=B. 

By analogy with Figure 3–14 a 4-bit magnitude compare circuit would be: 

 
Figure 3–16. A serial 4-bit magnitude compare 

We leave the derivation of the algorithm, as well as module and parallelizing 
logic for the problems. 

Using an Arithmetic Unit for Magnitude Comparisons 
If you are building a computer you may assume an arithmetic unit is available 
and this opens up alternate, and faster, means of doing magnitude comparisons. 
To compare the n-bit number, B, with another n-bit number, A, simply subtract 
B from A and look at the result, which will either be positive, zero, or negative. 
Positive and negative tests involve nothing more than looking at the result’s sign 
bit—a trivial operation. The zero test is just a wide AND gate testing for all 
zero’s, slower, but still relatively fast. 

As discussed later in this chapter, most computers will have efficient multi-bit 
subtraction hardware that will be much faster than the ripple circuits discussed 
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above and thus comparisons will inherit that speed. 

A Universal Logic Circuit 
We have gates for implementing the specific logic operations AND, OR, XOR, 
and so on. These gates are useful when we know at design time what logic we 
must implement in a given circuit. But in many applications we must perform 
various logic operations on a set of inputs, based on command information that 
is not available when we are designing. The best example is the digital 
computer, which must be designed to meet the requirements of any of its set of 
instructions. Just as we may select an input with a multiplexer, so must we be 
able to select a logic operation, (a truth table), with a suitable circuit. 

Let the inputs to this circuit be A and B, and output be f(A,B), using the 
mathematician’s functional notation. To select the particular logic operation, we 
must have 4 control inputs. Figure 3–17 shows this black box. The “slash 4” is 
a standard notation for 4 wires and the slash, which is reversed, must not be 
interpreted as a logical NOT. 

 
Figure 3–17. Inputs and output for the universal logic circuit 

We require the black box to be able to perform any possible Boolean logic 
function of its two inputs. As we mentioned in Chapter 2, there are 16 functions 
of two variables. We routinely use several of these logic functions; the useful 
ones for digital logic are listed in Table 3–1. 

AB CTL 0 
A 
N 
D 

 A  B 
X
O
R 

+ 
N 
O 
R 

X
N
O
R 

! 

B

 
 

! 

A

 
 

N 
A 
N 
D 

1 

00 T0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
01 T1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
10 T2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
11 T3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

Table 3-1 

“A”, “B”, “0”, “1”, seem uninteresting at first sight but are useful functions in 
the logic design of CPU’s. 

If we can produce such a comprehensive black box, we will have a circuit 
that can: 

(a) Ignore both inputs and produce a fixed FALSE or TRUE output. 
(b) Pass input A or input B through the circuit unchanged or inverted. 
(c) Perform our important logic functions AND, XOR, OR, XNOR, 
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A NOT, B NOT. 
(d) Perform the remaining functions of two variables; the four 

unlabeled columns play no important role in our study of digital 
design but we list them for completeness. 

You will see later that such a general-purpose device is a "natural" at the 
heart of the digital computer. Computers usually operate on two numbers to 
produce a result. Not only should this device perform useful logic operations 
upon two inputs, but it should transmit either input, unaltered or inverted. In 
addition, it should be a source of T and F bit values. 

Many designs for producing the 16 Boolean functions are known, but from 
our viewpoint the most elegant is a single 4-input multiplexer. To produce a 
function, our circuit must receive a 4-bit code, (the truth table), specifying 
the particular function. The obvious code values are {T0..T3}, the 4-tuple 
representation of the truth table’s desired output. By a 4-tuple we simply 
mean an ordered set of 4 symbols, {T0,T1,T2,T3}, this should not be 
interpreted as a binary number and whenever we use a 4-tuple we will 
enclose the values in curly brackets to emphasize that fact. In an unusual 
interpretation of the multiplexer in its table-lookup role, we may use the 
"data" variables A and B as the select inputs of the mux, and feed the truth 
table into the data inputs: 

 
Figure 3–18. A Universal logic generator 

Thus we may produce all 16 Boolean functions of two variables with a 4-
input mux This is tight design! 

Let us build an n-bit logic-unit for a CPU that will generate any one of the 
16 possible logic functions, f(A,B), of two n-bit variables, A and B. We 
observe that the f values are simply truth table values for the logic function, 
f, we are performing on A,B, lets call them {T0..T3} for brevity, and use 
these labels to denote implied wires passing the truth table values to each 
mux. Presumably other parts of the computer will compute {T0..T3} and 
present them at the appropriate time to the logic unit for processing. For 
example, an assembly language command to perform the AND of two 
variables would present {T0..T3} = {0001} to the logic unit to form 

! 

A•B . 

In drafting logic units, it is conventional to have the A,B inputs enter at the 
top, and the result, f(A,B), exit at the bottom of diagram. Changing the 
standard mux symbol to accommodate this results in Figure 3–19 for the low 
order 4 bits of a general-purpose logic. 
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Figure 3–19. Low order 4 bits a general purpose logic unit 

Schematic entry packages allow, indeed encourage, the packaging of 
complex circuits into compact symbols of your choice. A compact symbol 
re-packaging of Figure 3–18 might be: 

 
Now we can make wide logic units with reduced clutter; figure 3-20 is an 8-
bit example, here programmed to generate the AND of two 8-bit numbers. 
By judicious choice, your symbols can emphasize certain aspects of your 
design. Here we use dots on the right side of our symbol to emphasize that 
the truth table for our logical function, f, is fed in parallel to all bits of the 
logic unit. 

 
Figure 3–20. An 8-bit logic unit where each bit is the same circuit as figure 
3–18 

The universal logic circuit is elegant, but it is capable of performing logic 
operations only. If it is to be used as the heart of a computer, it should also 
be able to perform arithmetic operations. Let us leave our universal logic 
circuit for a moment and discuss the structure of circuits that can perform 
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arithmetic on binary numbers. Later we will consider circuits that can 
perform both logic and arithmetic. 

Binary Addition 
The full adder. We assume that you are familiar with the process of binary 
addition and the representation of numbers in the two's-complement notation. 
For each bit position, the truth tables defining the addition process are given as 
Table 3–2. A and B are the bits to be added, Cin is the carry bit generated by the 
previous bit position, SUM is the sum bit for the current bit position, and Cout is 
the carry generated in the current bit position. A device for summing three bits 
in this manner is called a full adder. (A similar circuit without the Cin input is 
called a half adder.) 

Table 3–2 T.T. for binary addition 
Cin A B SUM Cout 
0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 

The full-adder truth table yields Boolean equations for the sum and carry bits: 

! 

SUM = Cin •A•B+Cin •A•B+Cin •A•B+Cin •A•B  

! 

SUM = (A"B)•Cin+ (A"B)•Cin  

! 

SUM = A"B"Cin  

! 

Cout = A•B+Cin •(A+B) 

! 

Cout = A•B+Cin •(A"B) is also correct  
 

To perform addition on arrays of bits representing unsigned binary numbers, we 
may connect full adders together as in Fig. 3–21. As a concrete example, let's 
add two 3-bit binary numbers A and B, where A = 101 and B = 110. The result 
of the binary addition is 1011. The corresponding values that would be present 
on hardware wires are shown in Fig. 3–22. 

 
Figure 3–21. Addition with cascaded full adders 
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Figure 3–22.  101 + 110 = 1011 using full adders 

This method of connecting full adders is called the ripple carry configuration, 
since stage zero must produce output before stage 1 can become stable. After 
stage one becomes stable, stage two will begin to develop its stable outputs. 
In other words, the carry does indeed ripple down the chain of adders. This 
is the simplest but slowest way to perform binary addition. Presently we will 
look at ways of speeding up the process. 

Cascading single-bit full adders is not a particularly useful way to perform 
addition. In digital design we need to add numbers whose binary 
representations span several bits, and we wish to have building blocks suited 
to this task. A way to proceed is to abstract adders into 4-bit modules with a 
standard interface, which is unchanged if internal gate structure is changed 
to give greater speed, simpler structure, or some other desired metric. 
Another term for this abstraction is “information hiding” we don’t care about 
the module’s internals as long as it has the correct interface to the outside 
world; it could be a 4-bit ripple carry adder, a more sophisticated carry look 
ahead adder, or any other 4-bit adder that behaves properly. 

 
Figure 3–23. an abstract 4-bit add module 

An example of a modularized 12-bit add would then look like this: 
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Figure 3–24. A modularized 12-bit adder 

The “slash” notation can be extended to any number of bits, thus Figure 3–
24 could be represented as in Figure 3–25 where we have gained 
compactness but lost detail.  

 
Figure 3–25. Figure 3–24 redrawn using the “slash” notation 

Signed arithmetic. The multi-bit full adder circuit of Fig. 3–24 does binary 
addition on 12-bit positive numbers. If the inputs A and B represent signed 
integers in the two's-complement notation, the circuit of Fig. 3–21 can 
perform signed arithmetic. In the two's-complement notation, the leftmost 
bit represents the sign of the number, and so the circuit shown in Fig. 3–24 
can handle 11-bit integers plus a sign. 

When the circuit receives two integers, it produces the (signed) sum: A 
PLUS B. The circuit performs subtraction if the B input receives the two's 
complement of the subtrahend: A MINUS B = A PLUS (MINUS B). 
Incrementing is a useful special case accomplished by setting the low-order 
Cin to 1. 

A Simple Arithmetic Logic Unit 
Adding an adder to a universal logic generator is elementary if we gather the 
relevant equations, the equations for a full adder are:  

! 

SUM = A"B"Cin  

! 

Cout = A•B+Cin •(A"B) 

Simply adding an XOR to the universal logic block implements SUM, provided 
we program the universal logic block to generate A XOR B, {code 0110}: 
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Figure 3–26. A simple adder 

To make a general purpose ALU we need a way to switch between logic and 
arithmetic, and the XOR is in just the right location to act as that switch. 
Remember the XOR’s truth table, here divided into two halves, one with M=0, 
the other M=1; M (the “mode" bit) can be used to pass a variable unchanged or 
pass it inverted depending on its value   

M In 

! 

OUT = M" In  
0 0 0 
0 1 1 
1 0 1 
1 1 0 

Redraw the above circuit, replacing Cin by X. If we could somehow force X to 
be zero, the XOR gate would pass the value generated by the logic block 
unchanged; we then have a logic unit. Conversely, if X=Cin we then have an 
arithmetic unit. Let’s use a “mode bit”, M, to switch back and forth between a 
logic and arithmetic unit; when M=0 we have a logic unit, when M=1, an 
arithmetic unit. The relevant equation for X is then: 

! 

X =M•Cin  
Remember that in a ripple carry adder Cin = Cout from the preceding stage so 
the relevant carry chain hardware simply becomes: 

 
The Mode bit, M, turns Cout on or off, when M=0, Cout=0, and the carry chain 
is shut off with all carries =0; when M=1, the arithmetic carry chain is turned on.  
We have used the optimization that the logic unit will be generating A XOR B 
when acting as an adder and can use that in the carry generation circuit. The 
final logic for the 1-bit ALU then becomes: 
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(a) hardware (b) equivalent symbol 

Figure 3–27. A 1-bit ALU 

Using drafting software, a convenient packaging of this hardware might look 
like 3–27b. 

Incorporating the carry logic inside our logic module yields the symbol for a 1-
bit Arithmetic Logic Unit (ALU); a so-called “1-bit slice” of an ALU. We can 
now cascade these bit slices to give a schematic for an arbitrary sized ALU, 
figure 3–28 shows a 4-bit ALU. 

 
Figure 3–28. 4-bit general purpose ALU 

To program this ALU, first decide if f(A,B) is to be a logic function. If so, set 
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M=0 and feed in the desired truth table on inputs {T0..T3}. 

To switch to the arithmetic mode, set M=1 to turn on the carry chain; the 
function f(A,B) then depends on the truth table inputs as well as Cin to stage 0: 

M Cin {T0..3} f(A,B)  M Cin {T0..T3} f(A,B) 
0 0 {0000} 0  1 0 {0110} A plus B 
0 0 {1111} 1  1 1 {0110} A plus B plus 1 
0 0 {0011} A  1 1 {0011} A plus 1 

0 0 {1100} 

! 

A  1 1 {1100} MINUS A {2’s 
Complement of A} 

0 0 {0101} B  1 1 {0101} B plus 1 

0 0 {1010} 

! 

B   1 1 {1010} MINUS B {2’s 
Complement of B} 

0 0 {0001} 

! 

A•B       

0 0 {0111} 

! 

A+B       

0 0 {0110} 

! 

A"B      

0 0 {1001} 

! 

A"B      

Table 3–1. Commands for a general purpose ALU 

This ALU is about as simple as one can design, more sophisticated ones exist 
and are described in the references. 

Subtraction, (a detour into complement arithmetic) 

Some early computers had separate subtraction hardware but modern systems 
universally use an adder to accomplish subtraction. How is this possible? It 
turns out we can’t avoid doing a subtraction somewhere; the trick is to find a 
trivial way to do it before sending the subtrahend to the adder. The technique is 
called complement arithmetic, a standard tool known for centuries before the 
advent of digital computers. People using complements did so in the decimal 
system and by exploring its use in that number base you will be forced to 
comprehend the underlying theory; in binary, the operations are so simple that 
understanding can be compromised so we will take a detour through decimal 
complements before moving on to binary. 

Consider the traditional subtraction formula: 

(minuend − subtrahend = difference). 

Are there special minuends that simplify subtraction? Upon reflection, the thing 
that messes up subtraction is borrowing; if we could find a minuend that never 
caused borrows, things would be as simple as possible. In decimal, a minuend of 
all 9’s has this property; you can subtract digit by digit from either end without 
borrowing (the 9’s complement operation). We call the resulting difference the 
9’s complement notation of the subtrahend. To make things concrete, lets 
consider a simple decimal calculator with a keypad, a plus operation key (only), 
and a 3-digit display. 
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Suppose we want to subtract 2 from 5 using only the plus operation. The 9’s 
complement operation on 2 yields 997 in 9’s complement notation. We can use 
the association law of arithmetic to advantage here: 

5 + (999−2) = 999 + (5−2). 

The 9’s complement of 2 is easily performed in your head as you key in the 
value 997, then key in 5, and then hit the plus key. The result, 1002, doesn’t fit 
in a 3-digit display and the leftmost 1 in the 1002 is discarded. But, the answer is 
off by 1, do you see why? So we simply add 1 to get the final correct answer. By 
adding a one we in effect are forming (1000−2) and we know from the start the 
leftmost 1 will be discarded. When we subtract a number, X, from 100010 we 
get the 10’s complement of X; the general rule is adding a 1 to a 9’s complement 
turns it into a 10’s complement. (To reiterate, the term complement is used in 
two different contexts here; an operation performing 1000 − X, and a notation, 
998, for the result.) 

The phrase, in your head, was emphasized because it had to be done external to 
the adder, just another way of saying the subtraction was done elsewhere, albeit 
in a trivial fashion, because of the special minuend value used to form the 
complement. We’re not quite done, suppose you see 993 in the display. Is this 
the notation for a positive integer value of 993 or the notation for the 10’s 
complement of 7? The adder, or display, neither knows or cares, it is up to us to 
choose a convention. If we want to use the complement number system for 
negative numbers, represented by their complement notation, we reserve the 
range 000 to 499 for positive integers, and the range from 500 to 999 to 
represent negative integers, 

  

! 

("500,!,"1)# (500,!,999), in 10’s complement 
notation. 

But another problem lurks behind the scene. Add 400 + 300 and the calculator 
blindly adds them to produce 700, the representation of −300. What’s wrong? 
By working in the complement domain we split the range, into those for positive 
integers, and those for negative integers, and the sum of 400 + 300 now winds 
up in the range reserved for negative integers. We leave it as an exercise to show 
that adding −400 to −300 also produces an erroneous result. Both conditions are 
defined as overflow and a complement adder must detect this condition and 
report that fact. (We defer the hardware detection of overflow to the binary 
domain where it is easily calculated). 

To perform the 5−2 operation in binary we proceed exactly as above, the same 
principles apply, but hardware operations are simpler in the binary domain. 
Consider a 4-bit adder and ask what is the special minuend that generates no 
borrows during subtrahend subtraction. Clearly all 1’s fit the bill and subtraction 
results in the 1’s complement of the subtrahend. 

 1111 
−0010 
 1101 

The 1’s complement of 2 is thus 1101, simply the bit-by-bit complement of the 
subtrahend, something easily accomplished in hardware: 
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Now lets do the associative addition as we did in the decimal domain but use 
binary rules. 

0101 + (1111− 0010)  =  0101 + 1101  =  10010 

The leftmost 1 of the 10010 is discarded by our 4-bit hardware, leaving 2 as the 
final result, which again is off by 1 since we are working with a 1’s complement 
subtrahend. But, looking at the circuit in figure 3-20 we see that a “1” can be 
added back in by simply turning on the Cin bit to the least significant adder 
stage, a pleasant result. Adding a “1” in this fashion, in effect, converts the 1’s 
complement to the 2’s complement, just as adding a 1 to a 9’s complement turns 
it into a 10’s complement. 

Again, we split the range into positive integers, 
  

! 

(0,!, 7)10 " (0000,!, 0111)2 , 
and the rest to the 2’s complement representation of negative integers, 
  

! 

("8,!,"1)10 # (1000,!,1111)2. The left most bit is commonly called the sign 
bit, but strictly speaking it only indicates which part of the range you are in*. 
Overflow can occur just as in the decimal case whenever the sum of two 
numbers of the same sign results in a result with the wrong sign. We can 
formalize this statement as a logic equation: 

overflow = [(sign of A) XNOR (sign of B)] XOR (sign of sum) 

In appendix *, where overflow is developed in a more rigorous mathematical 
fashion, we derive an equivalent formula that requires less hardware: 

overflow = (carry into the sign bit) XOR (carry out of the sign bit) 

Subtraction—finally. 

Now that we know how to handle complement addition, we can do a subtraction 
by first forming the subtrahend’s 2’s complement, in a separate machine 
instruction, before sending it on to the adder. Some machine instruction sets 
include a “Complement and Increment” instruction for generating 2’s 
complements for just this purpose. 

Another technique would be to modify our generic ALU to generate the 
subtrahend’s 1’s complement on its way into the adder stage, while 
simultaneously issuing an ADD instruction, with Cin to the least significant bit 
turned on. This does a subtraction in one machine instruction at the cost of extra 
hardware to generate the 1’s complement. We leave this modification of figure 
figure 3-27 as grist for your mental mill, (hint use the XOR as a controlled 
inverter). 

Speeding Up Addition 
Ripple-carry schemes for binary addition are simple but very slow, lets see what 
we can do to speed up the process—which reduces to speeding up carry 
generation. Binary addition is a combinational process. You know that, at least 
in theory, any combinational process can be expressed as a truth table and 
implemented as a two-level sum-of-products function. This approach has only 
limited practical value in binary arithmetic, since the truth tables for a multi-bit 
sum become too large to manage. For instance, the truth table for a 12-bit sum 
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has 24 input variables (25 if we allow for separately specifying the initial carry-
in to bit position 0). 

Truth tables are a way of specifying in detail the outputs for each combination of 
input values. In non-arithmetic work we can usually find a simple repetitive 
pattern of one or two bits that serves as a model for the behavior of the entire 
circuit, and we can express the repeating function as a small truth table or as an 
equation. This works well in logic operations, since for each bit the result of an 
operation depends only on the data entered for that bit, and not on the data in 
adjacent or more distant bits. Unfortunately, arithmetic does not have this simple 
property because of the complex way in which the carry bits affect the result. So 
two-level binary addition, although desirable because of its speed, is intractable 
when there are more than a few bits. Within a small bit-slice, however, it is 
sometimes feasible to produce two-level addition, for instance, four-bit data 
inputs yield five 9-input truth tables, for the 4 bits of the sum and the single 
carry-out bit. Each of these truth tables has 2

9
 = 512 rows—painful but not 

impossible to produce if the rewards are great enough. But you can see that this 
is hardly a promising general approach. 

Ripple-carry is a serial method, slow and simple; two-level circuits are fully 
parallel, fast but difficult. We need an intermediate technique that provides some 
parallelism with a reasonable effort. A widely used approach is to cast the 
problem of addition into terms of carry generate and carry propagate functions. 
For the moment, consider a one-bit full adder, with inputs Ai , Bi and Ci , and 
outputs Si and Ci+1. We will focus on some properties of the data inputs Ai and 
Bi . We introduce a carry-generate function Gi that is true only when we can 
guarantee that the data inputs to stage i will generate a carry-out. We introduce a 
carry-propagate function Pi that is true only when a carry-in will be propagated 

across stage i to produce a carry out. For a 1-bit sum, the truth tables for Gi and 
Pi are 

Ai Bi Gi Pi 
0 0 0 0 
0 1 0 1 
1 0 0 1 
1 1 1 0 

Using these functions, we may express the carry-out and sum: 

! 

C
i+1 = G

i
+ P

i
•C

i
 (3-4) 

! 

S
i

= P
i
" C

i
 (3-5) 

 (To verify the equation for Si, you may wish to refer to Table 3–2, our original 
definition of the full adder.) These equations express the sum and carry-out in 
terms of just the generate and propagate operators and the carry-in, an important 
property that we will use when we extend these concepts to bit-slice adders. 
With these equations, we may implement multi-bit full adders, but the ripple-
carry effect is still present, since each bit's carry-in depends on the preceding 
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bit's carry-out. However, we may expand the equation for C, in terms of the 
equations for less-significant bits, to achieve a degree of carry look-ahead. For 
instance: 

! 

C
1

= G
0

+ P
0

•C
0
 (3-6) 

! 

C
2
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•P
0

•C
0
 (3-7) 

! 
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! 
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While messy, note that each equation involves only generate and propagate 
operators and the original carry-in, and thus all carries can be calculated in 
parallel. In practice, it becomes too complex to do this for more than 4 bits. If 
incorporated into a 4-bit slice a module symbol might look like 

 
Figure 3–29. A 4-bit ALU slice with carry look-ahead 

Figure 3–29 looks suspiciously like Figure 3–23 but that’s exactly what 
information hiding is supposed to accomplish. Let’s dive inside the 4-bit block 
to see how the carry generation circuits work. Each stage is modified to 
calculate Gi and Pi as shown in Figure 3–30a. Figure 3–30b shows a symbol 
embodying its behavior as a general ALU. f(A,B) will be a logical function 
represented by the truth table inputs when M=0; when M=1 and
T0-T3={0,1,1,0} then f(A,B,Cin)=SUM(A,B,Cin) 

 

TO

T1

T2

T3

A B

fG P

M

Cin

 

(a) (b) 
Figure 3–30. 1-bit ALU modified for carry-

lookahead 
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Using 3–30b, the internal structure of a 4-bit carry look ahead module becomes: 

 
Figure 3–31. Internal structure of a 4-bit carry look ahead ALU 

If we are building a large ALU from 4-bit-look-ahead-slices, we are still faced 
with the ripple-carry problem across the boundaries of each 4-bit slice, even 
though within each slice the carry-out is being computed rapidly. For instance, 
in Fig. 3–32, the most-significant carry-out cannot be computed until its 
corresponding carry-in (into bit 8) is stable, which in turn must await the 
stabilization of the carry-in to bit 4. We have carry look-ahead within the 4-bit 
slice, but not across the slices. 

 
Figure 3–32. A 12-bit ALU with carry look-ahead 

But generate and propagate can be applied to 4-bit modules as well as individual 
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adder stages. Group G now refers to a generate inside a 4-bit adder module, 
independent of Cin to that module; group propagate will send Cin to Cout across 
the group. So a 16-bit high-speed adder with auxiliary carry look-ahead would 
look like figure 3–33 (we have emphasized the group look ahead logic and 
suppressed detail inside each 4-bit slice). Also, figure 3–32 is an adder only but 
conversion to a general purpose ALU is straightforward. 

 
Figure 3–33. A 16-bit adder with group carry look-ahead 

Instead of relying on each 4-bit slice to send its computed carry-out rippling on 
to the next most significant 4-bit slice, we send the G and P outputs to the block 
carry look-ahead box. The look-ahead box is a combinational circuit that accepts 
all the G's and P's and the initial carry-in, and simultaneously computes all the 
carry-outs that must be sent to the 4-bit slices. The more significant slices do not 
have to wait for their carry-in signals to ripple in from lower stages. 

We may build the group look-ahead box from equations such as the following, 
which can be inferred from the intuitive meaning of the generate and propagate 
operators. 

! 
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! 

etc  

The look-ahead block can also produce its own version of G and P, so that look-
ahead circuits of more than 16 bits may be constructed by adding levels of block 
look-aheads. Two levels will support 64-bit addition. Each new level of look-
ahead circuitry increases the time required for the adder outputs to stabilize, but 
only by the block delay. 

Arithmetic is a vital function in most computer applications, and much effort has 
gone into producing fast and efficient arithmetic circuits. Multiplication and 
division present their own sets of difficulties; fast division is a particularly 
challenging problem. We will not cover these specialized areas; consult either 
the textbooks listed at the end of the chapter or the technical literature on 
specific computers. 
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Modern ALUs and Status Bits (C,S,Z,V) 
Most modern ALUs report, and store, carry, sign, zero, and overflow status 
information any time they perform an arithmetic operation. These 4 status bits, 
usually called C,S,Z,V, are useful for creating powerful conditional branch 
instructions. The C bit is just the Cout bit from the most significant bit; the S bit 
is just the sign bit —the high order bit of the result; the Z bit =1 if the result is 
zero. An ALU can store these 3 bits in a status register with essentially no 
overhead. The overflow bit is set when the result of an arithmetic operation is 
invalid. 

DATA MOVEMENT 
One of the most important operations in digital design is moving data between a 
source and a destination. When multi-bit data is involved the transfer medium is 
a bus and buses are used everywhere in digital logic, both internally in CPU’s, 
and externally for communication with peripherals. Originally a bus meant a 
bundle of wires to transport multi-bit data in parallel; later the concept was 
expanded to include a general data path, with multiple senders and receivers 
sharing the bus 

Parallel Buses vs. Serial Buses 

Data movement inside a CPU uses a parallel set of wires, a bus, with each wire 
dedicated to one bit of a word or byte; this parallel protocol is very fast but uses 
precious real estate on the chip’s Silicon surface. Circuit designers worry a great 
deal about “skew”, getting all bits to arrive at a destination within a very small 
time window.  If there’s lots of skew, the time window will be wide and that will 
slow down communication – something that clearly must be avoided. 
Fortunately, skew can be tightly controlled as long as the bus is in Silicon and 
all high performance computers use parallel buses for inter-register 
communication as well as communication between a CPU and cache memory. 
When you move “off chip”, control of skew is more difficult and motherboard 
designers usually try to keep bus physical length as short as possible. If you look 
at the bus between RAM and CPU on your PC you will see this principle at 
work. 

When you move “off board”, for example, communication to a disk drive, skew 
problems become unmanageable and the modern fix for this is 
counterintuitive—we go to serial busses. Consider the usual situation where you 
are sending 8-bit bytes down a bus. The serial bus protocol loads a byte into a 
high-speed shift register and serializes it, one bit at a time, for communication 
down a path. The receiver then re-assembles the bits into a byte for the 
receiver’s consumption. Obviously, since only one bit is sent at a time there is 
no skew. The absence of skew more than makes up for the serialization/de-
serialization step and modern serial buses work at 6 GHz, amazing! For a fuller 
discussion of serial buses see appendix * 

Now Back to Generic Bus Protocols. Controlling the Bus. We have a 
building block to move data—the bus—that takes the form of just one 
twisted pair for serial busses or n wires for parallel busses. How do we 
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regulate the traffic over these wires? In any scheme with more than one 
source or destination, there is a need to control the movement of the data. 
This control takes two forms: who talks, and who listens. On the bus, there 
must be no more than one talker (source) at a time, but several destinations 
may listen. 

The responsibility for listening on the bus (receiving data) is part of each 
destination device and is not directly a part of the bus operation. All 
destinations are physically capable of listening; whether they actually accept 
data is under their control. Maintaining control over the bus sources, to 
assure only one talker at a time, is very much a concern of the bus designer. 
We shall mention four control mechanisms, two of which you have already 
encountered. 

Bus access with the multiplexer. Our job is to select one source from 
several candidates. The digital designer, when encountering the concept of 
selection, has a knee-jerk response—the multiplexer. Unfortunately, knee-
jerk responses are sometimes not optimum but the multiplexer does indeed 
solve the “one talker” problem and is therefore pedagogically useful. For 
each bit of the bus's data path, attach a multiplexer output to the bus, making 
each source an input to the mux. We control this collection of n multiplexers 
with a common source-select code feeding into the multiplexers' select 
inputs. We show the idea in Fig. 3–34. In this approach, we collect the 
control for access to the bus in one spot, and assure that only one source is 
talking at a time—both important advantages. Further, it is easy to debug, 
since we maintain explicit centralized control over which source has access 
to the bus. On the other hand, the data mux method of bussing requires 
considerable hardware; we use an S-wide mux for each of the n data bits in 
the bus path. If n is large, we have lots of data multiplexers. Adding new 
sources is convenient as long as we do not exhaust the input capability of 
our muxes. If we exceed this capacity, we have a difficult hardware-
modification job. For instance, with 8-input multiplexers, we may manage 
up to eight sources, but the ninth source causes great agony. Thus, the data 
multiplexer method of bussing suffers from a certain inflexibility and is not 
very conserving of hardware. As a result, it is seldom used in real hardware. 

 
Figure 3–34. Bus control with multiplexers. 
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The remaining three methods lack the security of the multiplexer's encoded 
selection control. 

Bus access with OR gates. A primitive form of bus control is to merge all 
sources into the bus data path, using OR gates. For S n-bit sources, we 
would have n OR gates, each accepting S inputs. This produces the merging 
required to give all sources access to the single bus path, but it does not 
provide the control needed to allow only one source onto the bus at a time. 
Each bit of each source is either T or F; we must arrange for all sources but 
one to have all their bits false, while the one designated source presents its T 
or F data through the OR gates onto the bus. This approach places the 
responsibility for access with each source, rather than directly with the bus 
as in the multiplexer method. Each source must have its own gating signal to 
open or close the gate on its data bits. Typically, the sources have some form 
of AND gate on each data bit: the data forms one input and the control signal 
forms the other. (It is this usage that gave rise to the "gate" terminology in 
digital circuits.) The method is shown in Fig. 3–35. 
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Device 1 bit i
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Device 2 bit i

Device 2 select

Device n bit i

Device n select

 
One of N similar circuits 

Figure 3–35. 
Controlling access to 
the data bus with OR 
gates 

The OR-gate method has little to recommend it. Electronically, it performs 
the same functions as the mux method, with the mux circuits split into OR 
gates and AND gates. We might view this as a "poor man's mux," although 
its components will cost more than those of the actual mux method. It 
suffers from the same inflexibility of input-size as the mux method and lacks 
the certainty of control provided by the multiplexer's encoded selection 
process. 

The remaining two methods revisit concepts covered in chapter two and are 
widely used in real hardware. 

Open-drain (open-collector) gates. Open-collector technology provides a 
way to implement the OR logic function, and thus can be used in bussing 
applications. We must adhere to the stipulation that open-drain gates 
produce wired-OR when truth is represented by a low voltage. The 
advantage of open-collector circuits is the elimination of the wide OR gate 
used to merge signals in figure 3–35. 
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Proper control of the bus with open-collector wired OR logic involves the 
same concerns as the ordinary OR-gate method: we must still control each of 
the sources so that at most one is talking at a time. If the receiver knows who it 
wants to listen to, it can communicate with the sending device and enable its 
AND gate thereby enabling that source to put it’s data on the bus. 

What if things are more democratic and each device can individually decide 
when it wants to talk with the receiver, and what if the receiver doesn’t want to 
listen? Fundamentally, what happens is the listener activates a priority chain and 
talkers make requests to the chain. The highest priority talker then enables its 
data on to the bus. This is covered in more detail in appendix (*) 

 
Figure 3–36. Controlling access to the data bus with open-drain buffers 

Three-state outputs—the most common protocol. The three-state output 
has, as its name implies, three stable states instead of the customary two. In 
addition to the usual high and low voltage levels, the third state provides a 
high-impedance mode, usually called Z, in which the output appears as if it 
were disconnected from its destinations. The three-state output requires an 
enabling three-state control input. When the output is enabled, the circuit 
transmits the normal H or L signal presented at the input of the three-state 
circuit. If the output is disabled, the circuit output is for practical purposes 
not there at all. (Logicians should note that three-state outputs are not the 
same as ternary logic, which is a true base-3 system.) 

Many library modules incorporate three-state data outputs. The fundamental 
use is in bussing, so three-state outputs often provide power buffering like 
their open-collector cousins. Tri-state busses are fast and that is the reason 
for their dominance. 

We find three-state outputs in many useful building blocks. The multiplexers 
discussed earlier in this chapter have an enable input that holds their output 
false when the chip is disabled. In the three-state varieties, the output is 
"disconnected" when the chip is disabled. In Chapter 4, you will see more 
examples of three-state outputs in library building blocks. 
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The uses of three-state output control in data bussing are substantial. We 
may connect almost any number of three-state devices together and, with 
proper three-state enabling of only one source at a time, control access to the 
bus. Often the modules providing the bus's source data will have three-state 
output control built in; in other cases, we may need to add tri-state buffers to 
achieve three-state control. Figure 3–37 is a typical three-state bussing 
configuration. 

 
Figure 3–37. Controlling access to the bus with 3-state buffers 

Tri-state busses have the same “who’s talking” problem as open collector busses 
but in most tri-state applications the receiver knows who it wants to listen to and 
can communicate that to the tri-state drivers. Memory busses are a prime 
example. 

These drawbacks to three-state bus control are insufficient to counteract the 
tremendous advantages that this technology offers, and three-state control is 
used in most modern applications of data bussing. 

One caveat: Do not try to use three-state control as the source of a control signal. 
Control signals must be either true or false (asserted or negated) at all times, and 
we cannot afford to have them simply not there. Only with data whose use is 
governed by control signals do we have the opportunity to have certain data 
sources disconnected some of the time. 
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EXERCISES 

3-1. What distinguishes a combinational circuit from a sequential one? 
3-2. Explain the structure and the function of the multiplexer. What are the 

two major types of output enable found in multiplexers. 
3-3. Why not have one select input for each multiplexer data input rather 

than encoding the select information? 
3-4. If your simulator library contains an 8-input 3-state mux, use them to 

construct a 16-input mux, and verify. 
3-5. Consider figure 3–12. How would a mixed logician handle 3–13 if both 

A,B are low active, if one is? (assume you only have XOR gates). 
3-6. The 4-input multiplexer symbol below looks like a mixed-logic 

notation. Why do we not find this symbol useful? 

 
3-7. Build the 4-output demultiplexer in Fig. 3–10, using NAND, NOR 

gates and verify using a simulator. Will your design also serve as a 
decoder? If so, how? 

3-8. What is the most important characteristic of the outputs of a decoder? 
3-9. Construct a building block that will decode a 4-bit binary code into one 

of 16 outputs, using the 4-input demux of problem 3–6. 
3-10. What is the purpose of an encoder? Why are practical encoders priority 

encoders? 
3-11. Explain the difference between the concepts of encoding and decoding. 
3-12. Using NAND, NOR gates, design a priority encoder that accepts five 

inputs and produces a 3-bit output code. Use method 1 of the text. 
Repeat using a tree encoder. Verify both your circuits with a simulator. 

3-13. Parity is an important concept, frequently used in error-detection 
circuits within digital systems. The parity of a group of bits is odd if 
there are an odd number of 1-bits in the group; even parity implies an 
even number of 1-bits. Although rapid parity-computing circuits are 
available, the EXCLUSIVE-OR function provides the basis for parity 
computation. 

(a) Show that the EXCLUSIVE OR of two bits computes odd 
parity. 

(b) Show that, in general, 
  

! 

A
1
" A

2
" A

3
" ......." A

n
, expresses an 

odd-parity function of n bits. 
3-14. Consider Figure 3–15: 

a) It seems a little odd that the equality chain starts on the left with 
a T input but the other two chains start with an F input. Justify. 
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b) Could the bit order be reversed, i.e. low order bits be on the left 
for each of the 3 chains? 

c) Build a 3-bit comparator and verify with a simulator, or by 
hand. 

3-15. Construct a 4-bit parallel compare module according to problem 3–12 
and verify using a simulator. 

3-16. Performing arithmetic comparisons on signed numbers is more 
complex than comparing magnitudes. Consider two 4-bit signed 
numbers A and B, recorded in signed-magnitude notation. (This 
notation denotes a negative number with a 1 in the leftmost bit position 
and a positive number with a 0 in that bit position; the other bits record 
the magnitude of the number.) Develop logic equations to determine if 
A < B, A = B, and A > B in this notation. Explore whether the module 
of problem 3–15 is useful in realizing these equations. Produce a circuit 
(either with or without 3–15’s module) for generating the three 
comparisons. 

3-17. Design a 3-bit full adder equivalent to Fig. 3–20, using 1-bit full adders 
fabricated from NAND, NOR,NOT, and XOR gates. 

3-18. Modify Fig. 3–20 to perform the operation A (+) B (+) 1. 
3-19. Using the 4-bit ALU module of figure 3–22, and any necessary 

additional gates, design a circuit that will accept a 12-bit signed number 
in the two's-complement representation and produce the negative of 
that number. 

3-20. Verify the circuit of problem 3–20 using a simulator 
3-21. Devise a circuit that will accept a 12-bit signed number in the two's-

complement representation and produce the absolute value of that 
number. 

3-22. Verify Eq. (3–4 and 3–5) for the full-adder sum expressed in terms of 
the carry-generate and carry-propagate operators. 

3-23. Derive the equations for overflow in a 2’s complement adder. 
3-24. Discuss the merits of controlling a bus with: 

c. Multiplexers. 
d. OR gates. 
e. Open-collector buffers. 
f. Three-state buffers. 

3-25. Three-state control of outputs is common. Why do we not employ 
three-state control of inputs? 

3-26. Design bussing systems similar to Fig. 3–33 for six 4-bit devices, 
using: 

(a) Open drain bus drivers 
(b) Tri-state bus drivers 

3-27. The multiplexer bus control method shown in Fig. 3–33 has the 
desirable property that only one source can be talking on the bus at any 
time. Devise a three-state bus control system that also has this 
"guaranteed single-talker" feature. 


