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In the preceding chapters, we tacitly assumed that electronic devices are 
infinitely fast and that they generate outputs that depend only on the present 
input values. In this chapter, we explore the interesting consequences of 
violating these assumptions. 

First, we examine what can happen when there are finite propagation delays 
within gates. Output signals from assemblies of gates sometimes have spurious 
short pulses that are not predicted by standard Boolean algebra. These spurious 
pulses are seldom useful, but we must contend with them, usually by waiting 
until they have gone away. 

Next, we explore gate circuits that include feedback. Some of these circuits 
exhibit memory, which is an essential tool for the system designer. We consider 
useful sequential (memory) building blocks: flip-flops, registers, counters, and 
so on. These are basic tools for developing the digital architectures in the 
laboratory portion of the course. 

We then discuss large memory arrays—RAMs, ROMs, and programmable logic 
devices. 

THE TIME ELEMENT 

Hazards 

The outputs of real gates cannot change instantaneously when an input is 
changed. Integrated circuits operate by movement of holes and electrons within 
some physical material, usually silicon. Not even very light particles such as 
electrons can move at infinite speeds, and their movement will always involve 
delays. The time between a change in an input signal and a corresponding 
change in an output is called the propagation delay of the circuit. When inputs 
change, an output may undergo a change from L to H or from H to L. The 
corresponding propagation delays are denoted tpLH and tpHL. Propagation delays 
depend on the input waveforms, temperature, output loadings, operating power, 
logic family, and a host of other parameters. We will avoid all these factors by 
abstracting propagation delay by setting both tpLH and tpHL to tp. This is woefully 
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inadequate to describe real world devices but serves nicely to illustrate the 
principals involved. 

Another source of delay is the wire carrying signals between gates. Electricity in 
a wire can travel only about 8 inches in a nanosecond, so when wires become 
long, the interconnection delays may become serious. 

Our purpose here is to show how these delays can create spurious outputs called 
hazards. Consider the following simple circuit that changes the voltage polarity 
of a signal: 

A.H A.L

 
Assume that the voltage at the input A has been stable for a long time. The 
output will also be stable and of the opposite voltage level. If the voltage at the 
input changes, the output will change a short time later. When an input changes 
from L to H, the output will change from H to L after a propagation delay tpHL; 
similarly, an input H to L transition will produce an L to H output transition 
after a time tpLH. Figure 4–1 is a timing diagram, a graph of input and output 
values (either voltage or logic) as a function of time. Each variable's graph is 
called a waveform. 

 
Figure 4–1. Timing diagram showing propagation delays in a logic circuit 

To see what can happen when we introduce time into Boolean algebra, consider 
the following circuit, whose output is 

! 

A+ A 

 
Of course, we know that

! 

A+ A= T  regardless of the logic value of A, and we 
predict, from Boolean algebra, that the output of the circuit will always be L. 
But assume that each circuit element has a propagation delay tP for any 
transition. If A changes from T to F, the voltage pattern in Figure 4–2 will 
prevail; there is a spurious high-voltage (F) output that lasts for one gate delay. 
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Figure 4–2. A hazard caused by propagation delay in an inverter 

These spurious outputs of combinational circuits, called hazards or glitches, are 
common in digital systems. Fortunately, given sufficient time they will die out 
and the outputs of gates will assume the values predicted by classical Boolean 
algebra. 

Occasionally, it is necessary to generate gate outputs that are clean - that have 
no hazards. It can be shown that a function may have a hazard if the function's 
Karnaugh map has adjacent l's not enclosed in the same circle. The preceding 
example, when plotted on a one-variable K-map, becomes 

 
The two adjacent l's do not share a common circle, and indeed the circuit has a 
hazard. If we circle both l's in the K-map, we have the TRUE function, which is 
hazard free. 

The following function is a more complex example 

 
The theory is that a circuit based on the two solid loops may or may not contain 
a hazard; however, if we build a circuit that includes the dashed loop, we can be 
sure that the circuit will have no hazards. Using the dashed loop requires extra 
hardware (additional AND and OR gates), a necessary penalty when we cannot 
tolerate hazards. This technique of eliminating hazards works in simple sum-of-
products circuits derived from K-maps. In more general circuits, the elimination 
of hazards is quite complex, and therefore we must use finesse instead of brute 
force. Rather than use design techniques that require hazard-free signals, we will 
make our designs insensitive to the hazards that occur when combinational 
inputs are changing. A standard technique is to wait a fixed time after gate 
inputs change, during which time the hazards will die out. We may then proceed 
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to use the stable signals. This idea is the basis of synchronous (clocked) design, 
which we introduce in Chapter 5. 

Circuits with Feedback 

In the preceding section, we discussed purely combinational circuits. Except for 
momentary hazards, the behavior of the circuits is adequately described by 
Boolean algebraic or truth table methods used in the previous chapters. After a 
sufficient time to "settle," the circuit's outputs become a function only of the 
inputs. We now consider another class of circuits, in which the value of the 
outputs after the settling time depends not only on the external inputs but also on 
the original value of the outputs. Such circuits exhibit feedback: the output feeds 
back to contribute to the inputs of earlier elements in the circuit. 

Feedback yields curious results in some circuits. The following circuit, which 
has no external inputs, consists of three inverters and feedback: 

 
The voltage at the output is fed back into the input where, after a short time, it 
appears inverted on the output. The new voltage causes a similar inversion; the 
output voltage oscillates rapidly. 

Remove one inverter from this circuit, produces the following circuit: 

 
If you construct this circuit with real inverters and apply operating power, the 
output voltages of each inverter will go through a period of instability, during 
which one output will settle at a high level and the other at a low level. Although 
there is no way to predict which output will be high and which low, the circuit 
will remain stable after the settling time. You can verify the stability by tracing 
voltages around the circuit. Redrawing the circuit, as in Figure 4–3, helps to 
illustrate the stability. Since neither of the inverter feedback circuits shown 
above has external inputs, Boolean algebra is powerless to describe the circuit's 
behavior. 

 
Figure 4–3. Memory displayed by a circuit with feedback 

SEQUENTIAL CIRCUITS 

The circuit in Fig. 4–3 exhibits a primitive form of memory: the circuit 
"remembers" the resolution of the initial voltage conflict. Without external 
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inputs, this memory is useless. In contrast, certain feedback circuits with 
external inputs not only exhibit memory, but also allow the designer to control 
the value stored in the memory. Controllable memory is the digital designer's 
most powerful tool. Digital systems with memory are called sequential circuits. 

Sequential devices may be synthesized from gates, but this procedure is not 
within the scope of this book, except in that it shows the typical structure of 
some simple memory elements. Manufacturers have packaged proven gate 
designs of various sequential circuits, and we can use these as building blocks 
once we know their behavior. Sequential building blocks have names such as 
latch, flip-flop, and register. 

Unclocked Sequential Circuits 

The latch. The latch is the simplest data storage element. Its logic diagram is in 
Figure 4–4. To describe the action of the latch, we must introduce time as a 
parameter. This was not necessary in combinational logic, but it is always 
necessary in sequential logic. The timing diagram is frequently used to portray 
sequential circuit behavior. To analyze the latch circuit, consider the several 
cases shown in the timing diagram, Fig. 4–5. 

 
Figure 4–4. A latch circuit 

 

 
Figure 4–5. A Timing diagram for a latch. Note the 1’s catching behavior 

CaseA. HOLD = F. In this case, Y = DATA 

CaseB. HOLD = T. Any occurrence of DATA = T will be captured, and 
the output will thereafter remain true until HOLD becomes false. 
We consider three sub cases: 
(a) DATA is false throughout the period when HOLD is true. 

Then Y is false. 
(b) DATA is true when HOLD is true. When HOLD becomes 

true, the latch captures the (true) value of DATA and stores 
it as long as HOLD remains true. (After HOLD becomes 
false, case A applies.) 
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(c) DATA is false when HOLD becomes true. At the 
beginning, Y is false. The first occurrence of a true signal 
on the DATA line will cause Y to become true; the output 
will remain true until HOLD becomes false. 

The latch has the property of passing true input data to its output 
immediately. This behavior is sometimes useful in digital design, but it can 
be quite dangerous. Suppose that while HOLD is true, a glitch or noise pulse 
on the DATA line causes DATA to become true momentarily. This 
momentary true, or 1, will cause output Y to become true and remain true as 
long as HOLD is true. This behavior is sometimes called 1's catching; it is 
only rarely useful. 

The latch circuit in Figure 4–4 is not frequently used, and it is not generally 
available as a library circuit. A true latch is a memory element that exhibits 
combinational behavior at some values of its inputs. There are other varieties of 
latch; unfortunately, designers use the term loosely to describe various signal-
capturing events. We will soon develop more satisfactory memory devices. 

Timing diagrams may be used to show gross voltage or logic behavior, or to 
show fine detail. The timing diagrams in Figures 4–1 and 4–2 show the fine 
detail of gate delays. On the other hand, the timing diagram in Fig. 4–5 shows 
only the gross behavior of the latch circuit and is accurate only when the time 
scale is sufficiently large. On a fine time scale, the output Y in Fig. 4–5 would 
be shifted slightly to the right to account for the delays incurred while changes 
in DATA or HOLD are absorbed by the gates in the circuit. 

The asynchronous RS flip-flop. The feedback circuit in Fig. 4–3 exhibits a 
peculiar form of memory: it remembers which inverter had a low output after 
"power-up." The circuit has two stable states, and is indeed a memory, albeit a 
useless one, since there is no way to change it from one state to the other. By 
changing the inverters to two-input NOR gates, we obtain a useful device 
known as the asynchronous RS flip flop (see Fig. 4–6). We will study voltage 
behavior in this circuit before we introduce the concept of logic truth. 

 
Figure 4–6. An asynchronous RS flip-flop constructed with NOR gates 

The RS flip-flop is a bistable device, which means that in the absence of any 
inputs it can assume either of two stable states. To see this, assume that R = S = 
L, and assume that the output, Qbar, of gate-1 is L. Gate-2 will then present a 
high voltage level to Q. When this H feeds back to the input of gate 1, it will 
produce an L at Qbar, which is consistent with our original assumption about its 
polarity. We can describe this behavior by saying that the circuit is in a stable 
state when gate-1 outputs L and gate-2 outputs H. Once the circuit assumes this 
state, it will remain there as long as there are no changes in the R and S inputs. 
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There is another stable state during which gate-1 outputs H and gate-2 outputs L. 
We could predict this from the symmetry of the circuit, but you should verify it 
by tracing signals as we just did. 

We have shown that the circuit of two cross-coupled NOR gates can exist in two 
stable states. We call one of the stable states the set state and the other the reset 
state. By convention, the set state corresponds to Q = H, and the reset state to Q 
= L. 

The conventional representation of a flip-flop is a rectangle from which Q.H 
emerges at the upper right side. Most flip-flops produce two voltages of opposite 
polarity and the second output appears below the Q.H output. In data books, the 
second output is usually called 

! 

Q . Since this output behaves like Q with a 
voltage inversion, mixed logicians prefer to designate the signal as Q.L, the 
alternative voltage form of Q.H. Nevertheless, the nomenclature within the flip-
flop symbol, like our other building blocks, must conform to normal usage so 
there will be no confusion about the interpretation of the pins of the module. The 
interior of the symbol serves to identify pin functions; the external notations for 
inputs and outputs represent specific signals in a logic design. Thus, if we have a 
flip-flop whose output is a logic variable RUN, our standard notation for the 
output is 

 
Now we will consider the S and R inputs to the RS flip-flop. We know that as 
long as S and R are FALSE (low), the flip-flop remains in its present state. We 
may use the S and R lines to force the flip-flop into either state. S is a control 
input that places the RS flip-flop into the set state, Q = TRUE, (high), whenever 
S = TRUE, (low). Analogously, R = H resets the flip-flop by making Q = L. The 
obvious association of truth and voltage is T = H at S, R, and Q, so that we set 
the flip-flop by making S = T, and we reset by making R = T. This leads us to 
our usual mixed-logic notation for an RS flip-flop constructed of NOR gates: 

 
Figure 4–7 is a similar asynchronous RS flip-flop designed with NAND gates. 
This figure, a mixed-logic diagram of the cross-coupled gates, emphasizes that T 
= L at the inputs of this flip-flop. 
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(a) Mixed logic circuit (b) circuit symbol 

Figure 4–7. An asynchronous RS flip-flop constructed with NAND gates 

The term asynchronous associated with the RS flip-flop implies that there is no 
master clocking signal that governs the activity of the flip-flop; suitable changes 
of S or R cause the outputs to react immediately. Asynchronous means 
unclocked. Its counterpart is a clocked, or synchronous, circuit. (Some workers 
refer to all unclocked storage elements as latches; we will not adopt this 
practice.) The asynchronous RS flip-flop is sensitive to noise, or glitches, at the 
S input when in the reset state, and at the R input when in the set state. This 
sensitivity is occasionally useful, but in general you should avoid using 
asynchronous devices, since glitches are undesirable byproducts of gate delays 
and noise is usually unpredictable in digital systems. Part of our goal is to 
develop design techniques that bypass these inevitable problems. Therefore, one 
of our dictums will be: don't use asynchronous RS flip-flops as a general design 
tool. 

Switch debouncing. However, there is one standard use of the asynchronous 
RS flip-flop, as a switch debouncer. It is an unfortunate fact that mechanical 
switches do not make or break contact cleanly. At closure there will be 
several separate contacts over a period of many microseconds. The same is 
true during switch opening. The switch bounces. Since we do not wish to use 
a bouncy or spiky signal in our digital designs, we need a way to clean up 
the switch output. 

Whenever a mechanical switch changes its position, we wish the associated 
digital signal to undergo one smooth change of voltage level. The 
asynchronous RS flip-flop is well suited for this. Figure 4–8 contains two 
switch-debouncing circuits. The resistors keep the control inputs inactive 
unless the voltage from the switch forces one input to become active. When 
the switch is off, it is constantly resetting the flip-flop, producing a constant 
F output. As the switch moves toward the on position, there will be a period 
of oscillation or bounce on the R input, caused by the mechanical switch 
breaking and making its contact with its off terminal. The S input is false 
throughout all of this, and the repeated resetting does not affect the false 
output of the flip-flop. There follows a "long" period when the switch moves 
between its off and on positions, during which time both S and R are false. 
Then the switch begins its bouncy contact with the on terminal. The first 
contact causes S to become true, setting the flip-flop to its true state, where it 
remains throughout the on-position bounce and until the switch is returned to 
off. 
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(a) High-active inputs (b) Low-active inputs 

Figure 4–8. Mechanical switch debouncing circuits using asynchronous RS flip-
flops 

RS flip-flop Ambiguous behavior. Of the four voltage combinations of the S 
and R inputs, we have used three: to hold, set, and reset. What happens when S 
and R are simultaneously true? In the NOR-gate version, the voltages at both 
outputs of the flip-flop will be low—a disturbing situation. In the NAND gate 
version, both will be high. Although this deviation from voltage 
complementarity is unwelcome, it nevertheless represents a well-defined and 
stable configuration of the flip-flop. But watch what happens when we try to 
retreat from this configuration of inputs. If we change only one of the inputs, the 
flip-flop enters either the set or reset state without difficulty. But if we try to 
change both inputs simultaneously (in an attempt to move to the hold state), the 
flip-flop is in deep trouble. Consider the NOR-gate version of the RS flip-flop, 
Figure 4–6. If the voltages at S and R are both high then they are low at both 
Qbar and Q. If the voltages at S and R both become low simultaneously, then 
after one gate delay both gates in the flip-flop will produce high outputs. These 
high outputs, feeding back to the inputs of the NOR gates, will result in low gate 
outputs after one more gate delay. And so on. The circuit oscillates rapidly, at 
least at the beginning, with both outputs producing either high or low voltage 
levels "in phase." The resulting changes occur so rapidly that the flip-flop is 
forced out of the digital mode of operation for which it was designed, and the 
output voltages quickly cease to conform to reliable digital voltage levels—an 
example of metastable behavior discussed in appendix *. Eventually, the slight 
differences in the physical properties of the two gates will allow the flip-flop to 
drop into the set state or the reset state. The time required for the voltages to 
settle and the final result are uncertain, so this behavior is of no use to designers. 
Therefore, it is considered improper design practice to allow R and S to be 
asserted at the same time. 

Excitation tables. Timing diagrams are useful for displaying the time dependent 
characteristics of sequential circuits, but for most purposes a tabular form is 
better. The excitation table is the sequential counterpart of the truth table or 
voltage table for combinational circuits. The excitation table looks much like a 
truth table, but it contains the element of time. In a sequential circuit, the new 
outputs depend on the present inputs and also on the present values of the 
outputs. We can display the behavior of the RS flip-flop of Figure 4–6 in the 
following excitation table: 
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S R Q(t) Q(t+∆)  

L L q q Hold 
L H q L Reset 
H L q H Set 
H H q  Disallowed 

Q(t) is the value of output Q at time t;  Q(t+∆)  is the value of Q at a small time ∆ 
after t, where ∆ is sufficiently long for the effects of the gate delays to settle 
down. 

The excitation table is also useful for displaying the logical behavior of 
sequential circuits. For instance, the following excitation table describes the 
logical behavior of RS flip-flops, using a modification of the previous notation: 

S R Q Q’  
F F q q Hold 
F T q F Reset 
T F q T Set 
T T q  Disallowed 

In the literature, notations for excitation tables vary greatly and in this chapter 
we will use a variety of forms. You should be able to recognize these notational 
differences. 

Clocked Sequential Circuits 

Asynchronous flip-flops are l's catchers. A more useful class of flip-flop is 
available for general digital design. In these flip-flops, outputs will not 
change unless another signal, called the clock, is asserted. Since the activity 
is synchronized with the clock signal, these flip-flops are called 
synchronous. Digital systems usually have a repetitive clock with a square 
waveform. The clock signal alternates between its H and L signal levels. 
Depending on the application, we may view either H or L as representing 
truth on the clock line, although in almost all our applications we shall use 
the T = H assignment for clock signals; you will encounter clocked circuits 
throughout the remainder of this book. 

Clocked RS flip-flop. We can derive a clocked flip-flop from an 
asynchronous RS flip-flop by gating the R and S input signals to restrict the 
time during which they are active, as in Figure 4–9. The flip-flop outputs 
may change whenever the clock is true—a potentially risky situation similar 
to the 1's catching of the latch circuit. In digital systems, flip-flop outputs 
often contribute to combinational circuits that produce inputs to other flip-
flops. Shortly after the rise of the clock, the system is in "shock" owing to 
the changing of flip-flops. During this period of shock, hazards may be 
present that can feed erroneous signals into flip-flop inputs while the clock is 
still true, resulting in false setting or resetting of the flip-flops. 
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Figure 4–9. A clocked RS flip-flop circuit (bad design) 

It is natural to try to avoid this problem by making the true portion of the 
clock signal as narrow as possible. Unfortunately, this is not a good solution, 
since the system's behavior is crucially dependent on the quality of the clock 
and narrow clock signals are difficult to generate and distribute. 

The aim is to reduce the time during which the flip-flop outputs respond to 
the inputs. Since altering the clock waveform leads to difficulties, can we 
achieve the goal by further modification of the flip-flop circuit itself? Can 
we devise a flip-flop that will recognize R and S only at a single instant and 
ignore the inputs at other times? Such behavior would be desirable because 
all flip-flops would change at precisely the same time if they were clocked 
from the same source. This would mean that we could arrange for all the R 
and S inputs on all flip-flops to be stable at the time of clocking, and the flip-
flops would not be influenced by the shock of the changes induced just after 
clocking. 

Flip-flops that allow output changes to occur only at a single clocked instant 
are called edge-driven or edge-triggered. An edge is a voltage transition on 
the clock signal, and may be either a positive edge (L→H) or a negative 
edge (H→L). The clocked circuit in Figure 4–9 is level-driven, since its 
outputs may change at any time during the true part of the clock cycle. In 
your designs of clocked sequential circuits, use only edge-driven devices. 

Master-slave flip-flop. The master-slave flip-flop is a relic from the early days 
of integrated circuit technology, but is still widely used because of its pseudo-
edge-driven characteristics. It is a relatively simple device that we can easily 
discuss at the gate level, so we will show how one is derived by extending the 
clocked RS flip-flop. Figure 4–10 is a master-slave flip-flop schematic. The 
master flip-flop will respond to inputs S and R as long as the clock signal is 
high. This period must be long enough to ensure that S and R are stable when 
the clock goes from high to low. This H→L transition, the negative clock edge, 
isolates the master flip-flop from the inputs S and R. The master flip-flop will 
now remain unchanged until the next positive clock edge. 



© Chapter 4 Building Blocks with Memory 12 

 

Master Slave 

 
Figure 4–10. A master-slave clocked RS flip-flop 

Because of the voltage inverter, the slave flip-flop does not become sensitive 
to its input until one gate delay after the negative clock edge. At that time, it 
receives its S and R inputs from a stable master flip-flop. The net effect is 
that the outputs of the master-slave combination change only on the negative 
clock edge rather than during a clock level. 

Pure edge-driven flip-flop. The master-slave flip-flop appears to be an 
attractive edge-driven device. Why are we not content with this design? 
Because the master flip-flop is still a l's catcher during the positive half of 
the clock cycle. This means that R and S must stabilize during the negative 
half of the clock, since the master flip-flop will react to any T glitches during 
the positive clock phase. We could greatly simplify our digital circuit 
designs if we could eliminate the 1's-catching behavior. We need a flip-flop 
that samples its inputs only on a clock edge and changes its outputs only as a 
result of the clock edge. Such a device is called a pure edge-driven flip-flop. 
The F→T clock transition is called the active edge. It may be either the 
H→L or L→H transition, although in the most useful integrated circuits the 
L→H transition is the active edge. 

The property of changing state and sensing inputs only at a given instant 
gives the designer a powerful tool for combating glitches and noise. We can 
now choose the time to look at signals and can fix that time to allow 
adequate stabilization of the system. We will make constant use of pure 
edge-driven sequential circuits in our designs. The internal structure of these 
devices is rather complex, but for purposes of digital system design it is not 
necessary for us to examine their construction in detail. Hereafter, in all our 
discussions of clocked sequential circuits, we will assume the use of pure 
edge-driven devices. 

Excitation tables for edge-driven flip-flops. Assume that the edge-driven 
flip-flop is subjected to a steady stream of active clock edges. Each clock 
edge will cause the flip-flop to enter either its set or its reset state, in 
accordance with the values of its inputs and the current value stored in the 
flip-flop. Let us call the value stored in the flip-flop Qn after the flip-flop has 
received n clock triggers. If the flip-flop is in the set state after the nth clock 
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edge, then Qn = T; if in the reset state, Qn = F. After the appearance of the 
next clock edge, the value of Q will be Qn+1. The excitation table for edge-
driven devices is a tabulation of Qn+1 for all combinations of the exciting 
variables. 

In the remainder of this chapter, we will use excitation tables to classify flip-
flops. For the excitation table to be valid, we must ensure that the control 
inputs are stable for a short time before the active clock edge (the setup time), 
and perhaps for a short time after the active clock edge (the hold time). The 
input voltages may go through wild excursions prior to the onset of the setup 
time and after the hold time, as long as they remain stable during the setup 
and hold times. (Setup and hold times are device dependent and will be 
shown in data books.) 

CLOCKED BUILDING BLOCKS 

In this section, we present the common building blocks for clocked digital 
design 

The JK Flip-Flop 

Whereas the RS flip-flop displays ambiguous behavior if both R and S are true 
simultaneously, the JK flip-flop produces unambiguous results in all 
combinations of its inputs. A logical excitation table for the basic JK flip-flop is:  

Clock J K Qn Qn+1  
F X X q q  
T X X q q  

 F F q q Hold 

 F T q F Reset 

 T F q T Set 

 T T q  Toggle 

J is the counterpart of the S input of an RS flip-flop, and K is the counterpart of 
R. The first two lines of the excitation table demonstrate the edge-triggered 
behavior of the flip-flop: when the clock signal is a stable, false or true, the 
output of the flip-flop is insensitive to the other inputs. Often these lines do not 
appear in the excitation table, since such behavior is expected of an edge-
triggered device. The remaining four lines in the table describe the flip-flop 
behavior when the clock undergoes its active (F→T) transition. The first three of 
these lines are analogous to the RS flip-flop. The last line shows that if both 
control inputs are true when the clock fires, the flip-flop will complement its 
output. This behavior is called toggling. 

Now is the time to suppress some of the excitation table’s detailed behavior and 
introduce the standard notation for such tables. 

(a) Omit the first two rows. All edge driven devices imply this behavior 
(b) In the above table omit the Qn column 
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(c) In the Qn+1 column replace q by its equivalent, Qn 

The abbreviated (and standard) excitation table for the JK then becomes: 

 

Clock J K Qn+1  

 F F Qn Hold 

 F T F Reset 

 T F T Set 

 T T 

! 

Qn  Toggle  

Library JK flip-flops come in various forms. The most interesting variations are: 

(a) Active clock edge: positive or negative. On all clocked devices, we show 
the clock input as a small wedge inside the device symbol. A negative 
edge-triggered flip-flop has a small circle on the clock input, a positive 
edge triggered flip-flop would not have a circle:  

 clock edge   clock edge 

 

 

 
Figure 4–11. JK flip flops with positive and negative clock edges 

(b) Availability of asynchronous R and S inputs. These are often called direct 
clear or preclear and direct set or preset. One, both, or neither may be 
present. Direct set usually appears at the top of the flip-flop symbol, and 
direct clear at the bottom. Truth is usually a low voltage level, in which 
case these inputs will bear small circles. As long as an asynchronous input 
is asserted, it will override the normal synchronous behavior of the flip-
flop. Often the asynchronous set and clear pins are not named—their 
function is implied from their placement on the flip-flop symbol 

 

 

 
Figure 4–12. JK flip-flops with asynchronous set and clear 
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Preset Preclear Clock J K Qn+1 Action 

L L X X X ---- Disallowed 
L H X X X H Direct set 
H L X X X L Direct clear 
H H  L L Qn Hold 
H H  L H L Clear 
H H  H L H Set 

H H  H H Qn Toggle 
Excitation table for the flip flops of figure 4–12 

The JK flip-flop is our most powerful storage element, and you must master its 
use. There are several ways of using a single flip-flop, and later you will see 
many larger constructions based on this flexible element. (Be careful, some 
library JK’s work on negative clock edges without telling you. Verify before 
using) 

JK flip-flop as controlled storage. The most general use of the JK flip-flop, 
and the one that gives it such power and flexibility, is as a storage element under 
explicit control. In digital design, whenever we must set, clear, or toggle a signal 
to form a specific value for later use, we usually think of a JK flip-flop.  Another 
standard use is setting a flag at one time but clearing it at a later time—for this 
situation automatically think JK. The penalty for this generality is the need to 
control two separate inputs. 

JK flip-flop for storing data. The JK flip-flop is basically a controlled storage 
element. On occasion, we wish to adopt a different posture and view the JK flip-
flop as a medium for entering and storing data. From the excitation table, we see 
that Qn+1=Qn whenever J = K = F at the clock edge. This is simply a data-
storage mode. All that is necessary to continue holding data in the flip-flop is to 
ensure that J = K = F during the setup time before each clock edge. 

JK flip-flop for entering data. The J and K inputs are not data lines; they are 
control lines for the flip-flop storage. Nevertheless, we can view the JK flip-flop 
as a data-entry device. We can enter data in three ways: 

(a) Clearing, followed by later setting if necessary. 
(b) Setting, followed by later clearing if necessary. 
(c) Forcing the data into the flip-flop in one clock cycle. 

The rule for case (a) is: 

If you are sure that the flip-flop is cleared, you may enter data D into the 
flip-flop on a clock edge by having J = D, independent of the value of K. 

Case (b) is analogous to case (a). The rule is: 

If you are sure that the flip-flop's output is true, you may enter data D into 
the flip-flop on a clock edge by having K = 

! 

D , regardless of the value of J. 

You should verify the rules for cases (a) and (b). 
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As for case (c), the designer usually cannot guarantee that a flip-flop will be in a 
given state. Proceeding as we did in cases (a) and (b) would waste one clock 
cycle for the initial clearing or setting operation. It would be nice to have a mode 
that would force data to enter the flip-flop at a clock edge, regardless of the 
present condition at the output. Such a data-entry mode is called a jam transfer, 
since the data is "jammed" into the flip-flop independent of prior conditions. 
Examination of the excitation table for the JK flip-flop shows that such a mode 
is indeed available. We enter data D as follows: If D = F, J must equal F and K 
must equal T. If D = T, J must equal T and K must equal F. Combining these 
conditions, we see that Qn+1 will equal D whenever J = D and K = 

! 

D. 

The D Flip-Flop 

The D (Delay) flip-flop has a simpler excitation table than the JK, and is used in 
applications that do not require the full power of the JK flip-flop. The symbol 
and excitation table for the D flip-flop are: 

Q

Q

D

 

D Qn+1 
0 0 
1 1  

Most libraries will have these common varieties of D flip-flops: 

(a) The active clock edge can be either positive, , or negative, , which 
is shown by the absence or presence of a small circle on the clock 
terminal. 

(b) Direct (asynchronous) set and clear inputs appear in these 
combinations: both, neither, or clear only. Almost always, these 
inputs, when present, are low active, and appear in the diagram with 
the small circle. These asynchronous inputs are l's catchers, and you 
should only use them with great caution. 

(c) Some D flip-flops have only the Q output; others provide both 
polarities. Although it appears to be ideal for data storage, there are, 
in fact, just a few common uses of the D flip-flop in good design. 

D flip-flop as a delay. As its name implies, the D flip-flop serves to delay the 
value of the signal at its input by one clock time. You will see such a use in 
Chapter 6 when we discuss the single-pulser circuit for manual switch 
processing. 

D flip-flop as a synchronizer. One natural application of the D flip-flop is as a 
synchronizer of an input signal. Clocked logic must sometimes deal with input 
signals that have no fixed temporal relation to the master clock. An example is a 
manual pushbutton such as a stop switch on a computer console. The operator 
may close this switch at any time, perhaps so near the next edge of the system 
clock that the effect of the changing signal cannot be fully propagated through 
the circuit before the clock edge arrives. If the inputs to clocked elements are not 
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stable during their setup times, their behavior is not predictable after the clock 
edge: some outputs may change, others may not. We need some way to process 
this manual switch signal so that it changes only when the active clock edges 
appear. This is called synchronization. Since the output of a clocked element 
changes only in step with the system clock, we may use the D flip-flop as a 
synchronizer by feeding the unsynchronized signal to the flip-flop input. We 
deal with this matter more fully in later chapters. 

D flip-flop for data storage. The D flip-flop appears to be well suited to data 
entry and storage. Unfortunately, designers use it far too often for this purpose. 
The problem is that every clock pulse will "load" new data and this is seldom 
wanted. We usually need a device that allows us to control when the flip-flop 
accepts new data, just as we could with the JK flip-flop. With the D flip-flop, it 
seems natural to gate the clock by AND’ing it with a control signal in order to 
produce a clock edge at the flip-flop only when we wish to load data. This is a 
dangerous practice, as you will see in later chapters. Clocked circuit design 
relies on a clean clock signal that arrives at all clock inputs simultaneously. We 
have the best chance of meeting these conditions if we use unmodified clock 
signals. This means that the devices will be clocked every cycle, so we must 
seek other ways of affecting the necessary control over the flip-flop activities. 

The enabled D flip-flop. To alleviate the problems caused by gating the clock 
input to a D flip-flop, we will construct a new type of device called the enabled 
D flip-flop. Figure 4–13 shows the principle. The circuit consists of a D flip-flop 
with a multiplexer on its input. A new control signal LOAD appears, in addition 
to the customary data input. 

The system clock goes directly to the clock input, thereby avoiding the problems 
of a gated clock. As long as LOAD is false, the data selector selects the current 
value of the flip-flop output as input to the flip-flop. The net effect is that Q 
recirculates unchanged: the flip-flop stores data. When LOAD=T, the 
multiplexer routes the external signal DATA into the D input, where it will be 
loaded into the flip-flop on the next clock edge. The loading process is a jam 
transfer. Further, and most important, the enabled D is insensitive to glitches 
on the LOAD signal as long as it has stabilized before the clock edge 

The enabled D flip-flop is the element of choice for simple data storage 
applications. Although we can accomplish the same effect with the JK flip-
flop, the enabled D device provides a more natural way of handling data. 
Curiously, some libraries don’t contain enabled D flip-flops, but they are 
easily synthesized in any event. 

 
Figure 4–13. An enabled D flip-flop 
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REGISTER BUILDING BLOCKS 

A register is an ordered set of flip-flops. It is normally used for temporary 
storage of a related set of bits for some operation. This is a common activity in 
digital design, especially when the system must process byte, or word-organized 
data. You are familiar with the use of the word register in the context of digital 
computers, but the notion is more general than just accumulators and instruction 
registers. Multiple-bit storage is such a desirable architectural element that it is a 
natural candidate for building blocks. Your library will likely contain a wide 
variety of register elements, usually configurable as to width and presence or 
absence of direct set and direct clear. 

Data Storage 

Enabled D register. The most elegant data storage element for registers 
contains the enabled D flip-flop. As you have seen, we favor the enabled D 
configuration because we may hook the system clock directly to the device's 
clock input. The apparently small point of not gating the clock line is really of 
great importance to the reliability of the system, and you should adopt the 
practice routinely. Some libraries will just call this an “enabled D” register. You 
will need to experiment with a simulator to see if it conforms to the logic of 
figure 4–13. 

Pure D register. There are a few occasions when a register of pure D flip-flops 
is the element of choice. Pure D registers are also available, usually with a 
common asynchronous (direct) clear input. The only reason to choose such an 
element is if you want the direct clear feature; you know to be wary of its 1's 
catching properties. 

Counters 

Modulus counting. Counting is a necessary operation in digital design.  Since 
all binary counters are modulus counters, we will explore the concept of 
modulus counting before we examine the hardware for it. 

Counting the positive integers is an infinite process. We have a mathematical 
rule for writing down the integer n + 1 if we are given the integer n. This may 
cause the creation of a new column of digits; for example, if n is the three-digit 
decimal number 999, then n + 1 is the four-digit number 1000. In an abstract 
mathematical sense, the creation of the fourth digit is trivial. Not so in hardware. 

Hardware counters are limited to a given number of columns of digits, and thus 
there is a maximum number that a counter can represent. A three-digit decimal 
counter can represent exactly 10

3
 different numbers, from 000 through 999. We 

define such a counter as a modulus (mod) 1000 counter. (A number M, modulo 
some modulus N, written M modulo N, is defined as the remainder after dividing 
M by N.) Another way of viewing this is that the counter will count normally 
from 000 through 999, and one more count will cause it to cycle back to 000. An 
automobile's odometer behaves much the same way. 

Counting with the JK flip-flop. The JK flip-flop, operating in its toggle mode, 
goes through the following sequence 
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 Clock pulse number: 0 1 2 3 4 5 6 ... 

 Flip-flop output Q: 0 1 0 1 0 1 0 ... 

We see that the flip-flop behaves as a modulo-2 binary counter. Counters of 
higher moduli can be formed by concatenating other binary counters. For 
instance, a modulo-4 counter made from two modulo-2 counters must behave as 
follows 

Clock pulse number  0  1  2  3  4  5  6  7  8 ... 

Counter outputs  00 01 10 11 00 01 10 11 00 ... 

Can we devise a logic configuration that will cause two JK flip-flops to count in 
this fashion? One answer is in Fig. 4–14. Here, for drafting convenience, we 
draw the least significant bit Q0 on the left, whereas Q0 appears on the right in 
the usual mathematical representation of the number Q1 , Q0. Q0 alternates in 
value (toggles) at each clock. At alternate clock edges, Q1 is clocked when Q0 = 
T; at these times the value Q1 toggles. 

 
Figure 4–14. A two-bit binary counter. The least significant bit is on the left 

Figure 4–15 contains another solution that appears to give equivalent results. 
Again, Q0 will toggle at each clock pulse, since J = K = T on that flip-flop. This 

is necessary for a binary counting sequence. Every time Q0 generates a  

transition, 

! 

Q0  generates a  transition, which serves as the clock to the second 
stage. Figure 4–16 is a timing diagram for this circuit.  

 
Figure 4–15. A binary ripple counter. The least significant bit is on the left.  
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Figure 4–16. A timing diagram for a 2-bit ripple counter. Each stage suffers a 
cumulative propagation delay. Note the (00) and (10) transients. In synchronous 
counters there is only one delay.  

The timing diagram for Fig. 4–14 is almost identical to Fig. 4–16; the difference 
is due to propagation delays. In Fig. 4–14, if we assume that tp is the flip-flop 
propagation delay, both Q1 and Q0 will change, tp nano-seconds after the clock 
edge, since J and K were stable during the setup time of both flip-flops. We 
define such counters as synchronous. 

By contrast, Q1 in Fig. 4–15 cannot change until tp nano-seconds after Q0 has 
changed. Counters that change their outputs in this staggered fashion are called 
asynchronous, or ripple, counters, since a change in output must ripple through 
all the lower-order bits before it can serve as a clock for a high-order bit. Q1 is 
behaving well in isolation, but if you are looking at the time relation of Q1 and 
Q0 you see the presence of transient bit patterns, which violate the binary count 
sequence 

Ripple counters are easily extensible to any number of bits. Thus a modulo16 
ripple counter would be as in Fig. 4–17. This simple configuration is useful if 
you are not interested in the temporal relation of Q3 to any lower-order bits. A 
common example, the digital watch, has a 32,768—(215) Hz quartz crystal 
oscillator as the primary timing source. The watch display is driven at a rate of 1 
Hz, using the output of a 15-stage ripple counter. 

 
Figure 4–17. A 4-bit (modulo 16) ripple counter 

Figure 4–17 uses the dreadful “logic 1” notation; and even though we do not like 
it, you will encounter it in your travels so it is best to face it now. “logic 1” 
implies a H voltage, nothing more—it has nothing to do with logic. Only if you 
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restrict yourself to the positive-logic straightjacket does it also mean T. 
Similarly, “logic 0” means a L voltage, nothing more. This can trip you up in 
unsuspecting ways. Suppose you label inputs 0,1,2,3 to some logic block. 2 and 
3 are perfectly good variable names in this context but 0 and 1 are not. Instead 
you will be feeding your logic block with voltage L, voltage H, signal 2, and 
signal 3. Of course, if you follow our convention of always starting variable 
names with a letter you will avoid this ambiguity. 

The toggle flip-flop If you are in the counter domain, using the JK flip-flop is 
overkill. It is convenient to introduce a toggle flip-flop with this symbol and 
excitation table: 

Q

Q

T

 

T Qn+1 
0 Qn 
1 

! 

Qn   

Using the toggle flip-flop we can redraw figure 4–17: 

 
Figure 4–18. A 4-bit (modulo 16) ripple counter 

To discover the problems that can arise with ripple counters, let us consider 
when transient patterns are generated in figure 4–16. Reverting to normal 
mathematical ordering, (Q1,Q0), we see the sequence as: 00→01→(00)→10 
→11→(10)→00, where (00) and (10) are transient patterns lasting for tp 
seconds. Restating the binary patterns as equivalent decimal numbers the 
sequence is: 0, 1, (0), 2, 3, (2), 0. Count values are often used as select inputs 
to multiplexers; consider what happens when Q1, Q0, are so used in circuit 
4–18, where we naively expect Y to select variables V0, V1, V2, V3 for 
further processing by downstream logic. Instead we momentarily inject (V0) 
and (V2) into the normal binary sequence. 

 
Figure 4–19. 

Figure 4–14 represents a 2-bit special case of synchronous counters. The 
rule for changing the nth bit of a binary counter is that all lower bits must be 
1. Using this rule, we can construct a modulo-16 synchronous counter from 
Toggle flip-flops, as in Fig. 4–20. At the cost of extra AND gates, we have 
manipulated the inputs to each flip-flop to cause the flip-flops to toggle at 
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the proper time. Since a common clock signal runs to each flip-flop, the 
output changes will occur simultaneously, without ripple. 

 
Figure 4–20. A 4-bit synchronous counter 

Your simulation library will likely contain a wide variety of multi-bit 
counters classified by: 

number of bits 
up/down control 
non-enabled or enabled outputs, (enables are most likely tri-state) 
synchronous load (similar to enabled D flip-flops of 4–13) 
asynchronous clear 
may be configurable as to number of bits 
modulus (may be binary or decimal) 
cascadeability 

It will pay big dividends to carefully test each flavor using a simulator 
before blindly using one in a synthesis. 

Shift Registers 

A shift register performs an orderly lateral movement of data from one bit 
position to an adjacent position. We may construct a simple shift register 
from D flip-flops, as shown in Fig. 4–21. This circuit accepts a single bit of 
DATA and shifts it down the chain of flip-flops, one shift per clock pulse, (a 
right shift). Data enters the circuit serially, one bit at a time, but the entire 4-
bit shifted result is available in parallel. Bits shifted off the right-hand end 
are lost. Such a circuit is a primitive serial-in, parallel-out right-shift register. 
(Be careful here, normal digital drafting conventions have inputs on the left 
and outputs on the right. Contrast this with binary data representations where 
the high order bit is on the left and low order bit on the right. Stop and think 
about which convention is being used whenever encountering registers or 
counters.) 

 
Figure 4–21. A simple serial-in, parallel-out, right-shift, register 
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In practice, we have need for four shift register configurations: serial-in, 
parallel-out; parallel-in, serial-out; parallel-in, parallel-out; and serial-in, 
serial-out. The parallel-in, parallel-out variety is the most general, 
subsuming the other forms. Let's design one. Assume that we are building a 
4-bit general shift register. What features do we require? 

(a) We must be able to load initial data into the register, in the form 
of a 4-bit parallel load operation. 

(b) We must be able to shift the assembly of bits right or left one bit 
position, accepting a new bit at one end and discarding a bit from 
the other end. 

(c) When we are not shifting or loading, we must retain the present 
data unchanged. 

(d) We must be able to examine all 4 bits of the output. 

Suppose we start with an assembly of four identical and independent D flip-
flops, clocked by a common clock signal. Let the flip-flop inputs be D3…Do and 
the outputs be Q3…Q0, from left to right. Let the external data inputs be 
DATA3…DATA0, We have four shift register operations: load, shift-left, shift-
right, and hold. These will require at least 2 bits of control input to the circuit; 
let S1 and S0 be the names of two such control bits. Our task is to derive the 
proper input to each D flip-flop, based on the value of the control inputs S1 and 
S0. In our design of an enabled D flip-flop, we encountered a related problem, 
actually a subset of the present problem. There we had two operations, hold and 
load, that we implemented with one control input, using a multiplexer. We may 
employ the same technique here, using a four-input multiplexer to provide input 
to each flip-flop. We may then define codes S1, S0 for our four operations. 
Using S1 and S0 as mux selector signals, we may infer the proper inputs to the 
multiplexers. Here are the inputs for a typical bit i of the shift register: 

Clock S1 S0 Result 
desired 

Selected mux 
position 

Required mux 
input 

 0 0 Hold  0 Qi 

 0 1 Shift right 1 Qi+1 

 1 0 Shift left 2 Qi-1 

 1 1 Load 3 DATAi 

 

 

Figure 4–22. A typical bit Qi of a general shift register 
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When designing module symbols, most digital drafting tools allow complete 
freedom; you should use this freedom to create symbols that clearly reveal 
module functionality with minimum clutter. For example, we can define a “dot” 
to mean a module terminal that connects to a common wire. Using this 
convention, figure 4-23 pictorially represents the operational behavior of a 4-bit 
shift register. Further, the symbol lends itself to shift registers of arbitrary 
length. 

 
Figure 4–23. A 4-bit universal shift register 

 
C1 C0 Operation Bit-wise operations 
0 0 Hold  
0 1 Right shift 

  

! 

Lin "Q3, (Qi "Qi#1 ) i = 3!1, Lout = Q0 
1 0 Left shift 

  

! 

Rout = Q3, (Qi+1"Qi)i = 0!2, Q0 " Rin  
1 1 Load   

! 

(Di"Qi) i = 0!3  

Lin is an external “left-input”; it will enter the left-most bit position on a shift 
right command, Rin is an analogous external “right-input” 

MEMORY 

Modern integrated circuit memory technology is one of the crowning 
achievements of our Silicon age and it is hard to communicate what astonishing 
developments have happened, and continue to happen, with such simple starting 
materials: sand for Silicon, charcoal for converting sand to Silicon, Aluminum 
and Copper for wires, and minute amounts of dopants in columns III and IV of 
the periodic chart. To those who have been in the field a long time each new 
announcement of larger and faster memory modules is a source of delight and 
amazement. 

You will need to change your mind-set away from gates when considering 
memories. Memories are fundamentally area devices and optimization depends 
on distributing transistors on a Silicon surface in such a way as to minimize area 
but still implement desired macro logic behavior. 
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The field is broad and we will have to break it into subcategories to keep from 
losing our way during our guided tour of memory technology. We will strive to 
give you the basic operating principles of the various memory technologies, 
abstracting away technical details that do not contribute to understanding device 
fundamentals. Our aim is to equip you with basic understanding; if you wish to 
delve deeper by reading the technical literature then, indeed, we encourage you 
to do so. 

At the highest level we divide memory into non-volatile and volatile categories. 
In both technologies the transistors must be placed in rectangular arrays for 
spatial density reasons, and the technology for reading and writing them will be 
similar. 

Non-volatile memory 

Non-volatile memory is commonly called ROM (Read Only Memory). Once 
written, it will retain data indefinitely. We are surrounded by non-volatile 
memory. For example, your cell phone and digital camera retain data when the 
battery is discharged or even removed—the essence of non-volatile memory. 
We encourage you to think of all the systems in your computer, household, and 
car that depend on non-volatile memory. You will be surprised at the tally. 

ROM is a bit of a misnomer, somehow data must be entered at least once, 
perhaps more often, so a better acronym is PROM (Programmable Read Only 
Memory). Programming depends on underlying transistor structures; we will 
only consider today’s dominant technology, EEPROM (Electrically Erasable 
PROM). 

A transistor that is turned on or off stores bits in non-volatile memory. How do 
we turn these transistors on, and keep them on? Fundamentally because the 
highly purified SiO2 used in integrated circuits is a fantastic insulator. If you 
completely surround a conductor with ultra pure SiO2 any trapped charge will 
stay there for years, and you can use this trapped charge to turn a transistor on, 
and it will remain that way until charge bleeds away. 

Review the operation of an NMOS transistor (appendix *). The source and drain 
are N-type silicon separated by P-type silicon under the gate (a P-channel). A 
positive voltage on the gate attracts negative charge in the P-channel forming a 
conductive path between source and drain. An FGFet, (Floating Gate Field 
Effect Transistor), places a floating gate underneath the control gate, and 
modulates its behavior by interposing charge that can nullify the normal action 
of the control gate. Making the control gate positive will then no longer turn on 
the transistor. 



© Chapter 4 Building Blocks with Memory 26 

 

Figure 4–24. Cross-section of an FGFet transistor. 

A negative charge on the floating gate will attract 
more positive charge in the channel making it more 
difficult for the control gate to attract enough 
negative charge to open the channel, thus blocking 
the control gate 

How you get charge onto or off the floating gate is technology dependent and 
will be deferred to the literature references; suffice it to say that you can do this, 
but it takes hundreds of times longer to change the status of a transistor than it 
does to detect its status. The bits are “slow write—fast read”, where “fast read” 
means nano-seconds. Lets symbolically represent an N-type FGFet as follows: 

 

 

 
(a)  (b) 

Figure 4-25. Symbol for a blocked gate 
open-drain FGFet transistor  

 Symbol for an unblocked 
Open-drain FGFet transistor 

To show how these blocked transistors can be used to construct a memory you 
should go back to chapter 2 and review how open-drain transistors implement a 
“wired-OR”. There the rational for using open-drain logic was the assumption 
that transistors were in separate peripherals sharing a common wire and the only 
way to simultaneously avoid fights and distribute transistors was to use open-
drain devices. 

Memory devices need to arrange transistors in rectangular or square arrays to 
achieve high packing densities and this automatically means distributed logic; 
open-drain devices are well suited for this. Accessing these transistors requires 
logic to select a transistor’s row and column and some means of detecting its 
state. To see how this is done, consider a trivially small, 8x2 EEPROM that 
stores this table: (commercial EEPROM’s are much larger, 64k x 8 is typical). 

Row address ADR2 ADR1 ADR0 Y1,0 
0 0 0 0 00 
1 0 0 1 10 
2 0 1 0 10 
3 0 1 1 01 
4 1 0 0 10 
5 1 0 1 01 
6 1 1 0 01 
7 1 1 1 11 
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(a) FGfet transistor structure for an 8x2 EEPROM 

Figure 4–26. EEPROM memory structures 

Before moving on, consider the distributed nature of Figure 4–26. The resistor, 
R, is trying to pull a line high, and will do so unless one of the unblocked 
transistors overcomes the resistive drive and pulls the line low. The unblocked 
transistors correspond to the 1’s in the truth table and thus corresponding 
outputs, Y1 and Y0, are low true signals. 

This is just our old friend, the “wired OR” where we distribute transistors in a 
rectangular array to achieve high packing density—something every memory 
designer struggles to achieve. The transistor array is often called the “OR plane” 
recalling it’s logical function and its physical structure. Further, the address 
decoder geometry will be distributed vertically to match the row spacing of the  
OR plane. 

(We have simplified the EEPROM’s wired OR to make it intelligible with the 
background you have. The FGfet’s and array structure are accurate, but 
sometimes the wired OR resistor is simulated by a technique called 
precharging—see the references on VLSI design if you wish to delve deeper; 
otherwise accept the simpler, and logically equivalent, resistor explanation) 

Figure 4–26, while accurate, is too cluttered and we need some way to subsume 
OR plane detail into something that portrays its logic function, reveals the 
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distributed nature of the OR function, while hiding internal details like pre-
charging; in other words we need to find the proper abstraction level. Figure 4–
27 shows a common representation. 

 
Equivalent shorthand for Fig. 4–26, the crosses represent unblocked transistors 

Figure 4–27. EEPROM memory structures 

The crosses in Figure 4–27 represent unblocked transistors—the ones that are 
capable of overcoming the resistor trying to pull the line high—and therefore the 
ones that will generate the 1’s in the target truth table; (do not confuse the 
crosses in 4–7 with the x’s in 4–26). 

Now for an important point: viewed as an abstraction, Figure 4–27 is the 
description of the data we want the OR plane to generate independent of the 
implementation technology. As such, it can be viewed as an input description to 
programming hardware which will charge floating gates, burn fuses or anti-
fuses, or whatever the technology of the moment requires, to implement the 
requisite data. For this course, you should work at a still higher abstraction 
level—the data to be burned into each memory location—and not worry too 
much about the underlying hardware. In practice your data will be in a file that 
you submit to programming hardware and charge will be injected into the proper 
transistors to correctly program any PROM regardless of technology. 

EEPROM and FLASH are the dominant technologies in most of today’s non-
volatile memory applications, basically because charge can be injected or 
removed at the relatively low voltages supplied by batteries. Flash memory is 
just a large EEPROM organized as blocks with the ability to erase a block in 
parallel. EEPROM is reserved for those applications that need individual byte 
eraseability. They have the additional advantage that they can be reprogrammed 
inside a system; you don’t want to take your cell phone apart every time you 
update the address book. 
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Volatile memory 

Any memory whose bits fade away when power is removed is volatile; common 
varieties go by names such as SRAM, SDRAM, DRAM, DDR2 and too many 
more to go into each variety in detail. Instead, we will explore the two main 
types of storage cells: flip-flops for static RAM and capacitors for dynamic 
RAM. RAM is an acronym for Random Access Memory, meaning any location 
in the memories address space can be accessed with the same latency. Uniform 
latency also applies to ROM’s, which are therefore also random access devices, 
but unfortunately the RAM appellation is, by convention, usually reserved for 
volatile memory. 

Static RAM, (SRAM), maintains data as long as power is applied. SRAM cells 
use several transistors and tend to consume more power than other memory 
technologies. This disadvantage is offset by fast access times so for applications 
like cache memory where speed is more important than power consumption, 
SRAM’s will be the technology of choice. 

Dynamic RAMs (DRAM) store bits by the presence or absence of about 2x10
5
 

electrons, stored on tiny capacitors.  DRAM memory cells are physically small 
with just one transistor and its associated capacitor. Unfortunately small size 
comes with a disadvantage—capacitors are not perfect and charge will leak 
away over time unless periodically refreshed every few milli-seconds. The cost 
and complexity of external refresh logic is more than compensated by DRAM’s 
large capacity, which makes it the technology of choice for computer main 
memory. Small embedded systems are an exception and can usually get by on a 
mix of ROM’s and SRAM’s, avoiding the complexity that comes with DRAM 
technology. 

Enough words, lets build things! 

Designing a high speed 1M x 32 cache memory using SRAMs 

Let’s choose an industry standard 512kx8, 10ns asynchronous SRAM. 
Asynchronous means it doesn’t need a clock—just supply an address and read 
data will be available tAA ns later, according to the timing diagram in figure 4–
28. 

 
Figure 4–28.  Timing diagram for a read cycle of an asynchronous SRAM 

After the address changes, data at the new address will appear on the data out 
lines after tAA ns. You must hold that address for tRC ns. 
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Figure 4–29.  Timing diagram for a write cycle of an asynchronous SRAM 

To write data, present a new address, disable chip outputs by bringing Output 
Enable (OE) high, select the chip by bringing Chip Select (CS) low, present 
write data, and then cycle Write Enable (WE). The write takes place on the 
rising edge of WE. 

Since the memory is 32 bits wide we need 4 chips to form one bank of 512k x 
32, and two banks to get 1M x 32. 

 
(a) 512k x 32 bank made from four 512k x 8 chips 

 
(b) Equivalent hierarchical symbol for a 512k x 32 static RAM 

Figure 4–30. Making a 512k x 32 memory bank from four 512k x 8 memory 
chips 
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Figure 4–31. A 1M x 32 memory made from two 512k x 32 banks of SRAM 
The heavy lines are a bus - just a bundle of wires 
(a) The address bus contains 19 wires, the data bus 32 wires 
(b) The high order address bit, A19, selects banks, putting either bank 0 or 

bank 1 on the tri-state data bus 

This is our first encounter with bidirectional signals. Pins and wires are always 
in short supply, especially in memory chips, and data-in/data-out signals usually 
share the same wire. How to avoid fights and collisions? Tri-state to the rescue! 

 
Figure 4–32. Using tri-state buffers so one wire can share bidirectional data 

Static vs. Dynamic RAM’s Static RAM cells are essentially small flip-flops, 
usually using 4 transistors per cell. As flip-flops they have the nice read and 
write protocols used above. Dynamic RAM cells on the other hand employ just 
one transistor to access the storage element, a tiny capacitor. As you might 
expect from the transistor count, dynamic RAMs pack about 4 times as many 
bits per unit area as SRAMs. Controlling them however is a matter of some 
delicacy and is deferred to appendix *. Unless you intend to become a 
professional designer working with large memories, you should stay with static 
RAMs and enjoy the pleasant interface they present to the designer. 

Programmable Logic 
What’s logic doing in a chapter on memory? The stunning advances in memory 
technology are paralleled by similar advances in programmable logic. The field 
is broad and full treatment will be deferred to the laboratory portion of the 
course. For now, we will only explore how memory can morph into logic 
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Look at Figure 4–33 that computes SUM and Cout and assume that you are not 
allowed to peer inside the black box. From that vantage point what could you 
infer about the box’s internals? Only that wires SUM and Cout have values 
corresponding to the truth tables for the full adder—not how these values were 
generated. Gates could calculate the values, or the input values could be used as 
an address to look up SUM and Cout. 

AND, OR, and NOT can be used to calculate any logic function and are 
therefore called a complete set of primitives, but now we see that Memory could 
also be a universal logic primitive. From a manufacturing standpoint this 
universality could be very attractive; build one thing and it will solve all 
possible logic problems. Well, yes and no. 

When viewed as a memory, the horizontal lines emanating from the decoder are 
viewed as memory addresses. While it’s a little odd, you could also think of 
them as canonical minterms of the address bits. If you replace the input address 
with logic variables then the oddity immediately disappears, the decoder now 
produces canonical minterms of those variables. Replace A2 with Cin, A1, with 
A, and A0 with B and you have a complete set of minterms for a 3-variable truth 
table. Each horizontal line represents a minterm, for example line 3 = m3 = 

! 

Cin •A•B  
 

 
Figure 4–33. An 8x2 EEPROM used to generate full adder logic 

Viewing decoder outputs as minterms makes perfect sense for generating 
canonical sum-of-product logic functions for a few variables, but no sense for a 
64k x 8 EEPROM; what would you do with 64k minterms? Large PROMS are 
perforce viewed as data storage devices.  Why? Fundamentally, because the 
address decoder does too much work, it decodes each and every address. Think 
of using an ROM to generate a 10-bit AND. The OR plane will have 1024 rows, 
only one of which will generate a “1”—a horrible waste of Silicon. 



© Chapter 4 Building Blocks with Memory 33 

Array Logic An early form of programmable logic struck at the heart of the 
problem by building a decoder that only generated minterms for the “1’s” of the 
truth table. Decoding is an AND process and we will need to find a way of 
building distributed AND functionality across the chips area. By the principle of 
duality, if we can build distributed OR’s you would expect to do so for 
distributed AND’s, and that is indeed the case. (We leave this as grist for your 
mental mill; hint, review open drain logic in Chapter 2). 

Minterms use exactly one occurrence of each input variable in either negated or 
non-negated form. All this is hidden inside the address decoder of a PROM or 
RAM but now we need to get it out in the open and explicitly look at the inputs 
to the minterm generator. To be universally applicable we should provide both 
terms for every variable. 

Figure 4–34 shows the standard array logic graphic symbol for generating an 
input variable, X, in true and negated form, before sending them into the 
distributed AND minterm generator. The device will buffer the inputs to provide 
solid drive to the distributed AND structure. 

 
= 

 
Figure 4–34. An array logic input buffer 

Programmable AND Plane Logic. Using the compact symbol for input buffers, 
we can build an abstract picture of AND plane logic that portrays the distributed 
nature of the active logic elements, the minterms generated, and an input 
description suitable for driving programming hardware. The crosses in Figure 4–
35 correspond to underlying transistor or fuse structures that will feed the 
corresponding minterm to the distributed AND devices. 

Programming hardware will place crosses wherever you desire, generating as 
many, or as few minterms, as you desire, with one caveat; to save Silicon, AND 
planes will be restricted to some size deemed optimum by the chip designer. 
Most of your target equations will have just a few minterms, with an occasional 
one requiring many. If the chip designer makes large AND planes he can handle 
complex equations but that wastes Silicon for the more common small 
equations. Techniques exist to bypass this problem but will not be considered 
here. 

 
Figure 4–35. An abstract description of a programmable AND plane 
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To create a sum-of-products expression all we need is to add an OR to sum the 
minterms as in Figure 4–36. 

 
Figure 4–36. SUM(Cin,A,B) implemented in programmable array logic 

We see that placement of abstract crosses leads immediately to a sum-of-
products expression; it is a small step to reverse the process and use minterms as 
input to the programming hardware. 

Commercially available arrays are indeed powerful and are organized as 
macrocells. One commercial device has 512 macrocells, each macrocell has 36 
inputs, one 5-wide OR, and the ability to take the output of one macrocell and 
feed it into an adjacent macrocell, effectively expanding the OR to any width. In 
addition, a macrocell will usually have a flip-flop fed from the programmable 
array making it a truly general-purpose element. For a cost in the dollar range 
you get an effective gate count of many 10’s of thousands, and 512 flip-flops, 
(although in real world devices only a tiny fraction will wind up being used). 
Amazing! 

THE METASTABILITY PROBLEM 

We began this chapter with a discussion of hazards, a nuisance created 
by the characteristics of physical devices used to implement logical 
concepts. In Chapter 5 you will encounter other design pitfalls rooted in 
physical behavior—pitfalls that arise through the interactions of several 
components of a design. There remains to discuss the most alarming 
physical problem of all—metastability. We will alert you to the problem 
and give some advice, but you should look to appendix * for a more 
extensive treatment of this topic. 

Digital devices are fundamentally analog devices that behave digitally only 
when stringent rules of operation are obeyed. Sequential devices contain 
amplifiers (gates) and feedback loops to achieve their storage properties. In 
addition to establishing proper voltage levels at the inputs, to assure proper 
operation of a sequential device you must adhere to the setup times, hold times, 
and other timing specified in the data sheets. When the operational requirements 
are met, the device's outputs will be proper digital voltage levels, and changes in 
the level of the output will occur quickly and cleanly. Except during the rapid 
period of transition, the circuit remains in one of its stable states. You have seen 
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that there are difficulties associated with the RS flip-flop when one tries to move 
from the R = S = T input configuration to the hold configuration, in which R = S 
= F. The difficulties arose from the attempt to change both inputs 
simultaneously. As long as no more than one input is changing at a time, the 
sequential circuit performs well, but if the voltage level of more than one input 
is allowed to change at nearly the same time, the circuit is being required to 
perform outside the framework of design for digital operation and the result may 
be unpleasant. For the proper operation of clocked circuits, the setup and hold 
times require that certain inputs must not change too near the time that the clock 
signal is changing. 

Violation of the timing requirements of a sequential circuit may throw the circuit 
into a metastable state, during which the outputs may hold improper or 
nondigital values for an unspecified duration. In one form of metastability, the 
output voltage lingers for an indefinite period in the transition region between 
digital voltage levels, before it eventually resolves into a stable value. In another 
form of metastability, the output appears to be a proper digital value, but after an 
unpredictable interval switches to another value. Metastability can be disastrous. In 
synchronous design, we sidestep the problem by never changing the inputs in 
the vicinity of the clock. As you will see, this allows vast simplification of the 
design of complex circuits. But every circuit is at some point exposed to external 
reality—other circuits with different clocks, unclocked or nondigital devices, 
and human operators, for instance. Signals from such sources are not tied to our 
clock and may change at any time during our clock cycle. Therefore, although 
we can simplify our design by using good practices, no amount of digital or 
analog wizardry will eliminate the problem of metastability. However, by proper 
design or choice of components, we may lower the probability of finding the 
circuit in a metastable state to a satisfactory level. In appendix *, we discuss 
metastability in more detail and offer guidelines for dealing with the problem. 

CONCLUSION 

You have completed Part I of this book, in which we have explored the 
fundamental tools underlying digital design. From basic combinational circuits 
we have developed a set of building blocks that range from simple logic gates to 
complex ALUs, from flip-flops to large memories. Now you are ready to begin 
the exciting activity of digital design. Part II introduces you to this process.
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E X E R C I S E S  

4-1. Show that the following combinational circuit contains a hazard. 

 
(a) Write the logic equation corresponding to the circuit, and 

draw a K-map with circles corresponding to the circuit. 

(b) Most of the time our design techniques will nullify the bad 
effects of hazards; nevertheless, suppose that you must 
eliminate the above hazard from the circuit. Starting with the 
K-map you drew for part (a), produce a hazard-free map by 
making certain that adjacent 1's share at least one circle. 
Write the logic equation and draw the hazard-free circuit 

(c) Prove, by using a timing diagram, that your new circuit is 
free of hazards. 

4-2. Assume that each combinational circuit element has a 
propagation delay of tp. What is the total (worst-case) 
propagation delay in the following circuit? 

 
4-3. In Fig. 3-5, the circuit for the enabled multiplexer imposes the 

enabling operation on each of the initial AND gates, forcing 
them to have three inputs. Suggest why, in Fig. 3-5, the enabling 
operation was not designed as a single final AND gate with only 
two inputs. 

4-4. A circuit consisting of a closed loop of an odd number of 
inverters (greater than one) can function as an oscillator. Assume 
that the propagation delay through an inverter is 10 nano-
seconds. 
(a) With a timing diagram, show the oscillatory behavior of a 

loop of three inverters. 
(b) The oscillator consisting of a loop with just a single inverter 

is not stable. Speculate about why this circuit is 
unsatisfactory. 

4-5. What is feedback in digital design? Draw a gate circuit that 
exhibits feedback with memory. 

4-6. Why are combinational methods inadequate to deal with 
sequential circuits? 
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4-7. Explain " l ' s  catching." Why is this behavior usually a disadvantage in 
digital design? 

4-8. Explain the terms asynchronous and synchronous. 

4-9. Show that the asynchronous RS flip-flop has two stable states. 

4-10. Why do we usually avoid asynchronous flip-flops in digital design? 

4-11. What is switch debouncing? Why can we usually not use a mechanical 
switch signal directly in a digital design? Draw a switch-debouncing 
circuit. 

4-12. Using a timing diagram, analyze the behavior of the switch debouncer 
shown in Fig. 4–8a or 4–8b. 

4-13. Assume that two (noisy) mechanical switches generate the DATA and 
HOLD signals for the latch in Fig. 4–4. Is there any sequence of switch 
closings and openings that would yield a clean output signal at Y? 

4-14. The RS flip-flop exhibits anomalous output behavior if both R and S 
are true. 
(a) What is the anomaly? 
(b) Does the anomaly occur in outputs X and Q of Fig. 4–6? 
(c) In Fig. 4–6, assume that R = S = T. What is the value of Q if both 

signals become false, but R becomes false slightly before S? 
(d) Under similar conditions, what value does Q assume after 

precisely simultaneous TF transitions of R and S? 

4-15. What is an edge-driven flip-flop? Why is it desirable? What is the 
defect in the master-slave flip-flop? What is a pure edge-driven flip-
flop? What kind of flip-flops do we use in digital design? 

4-16. Consider an edge-driven JK flip-flop with the direct set input and the K 
input asserted (true), and the direct clear input and the J  input negated 
(false). What will be the flip-flop's output shortly after the next active 
clock edge arrives? 

4-17. The text describes three cases in which the JK flip-flop may be used to 
store a bit. Two of these cases are (a) clearing, followed by later setting 
if the data bit is true; (b) setting, followed by later clearing if the data 
bit is false. Verify the text's rules for implementing these two cases. 

4-18. Do you want to observe metastability in action? Use a simulator to 
create an asynchronous flip-flop. Start with both R and S True and 
simultaneously make them False. What behavior do you observe on the 
Q and 

! 

Qoutputs? How would a real RS behave? 

4-19. What is the difference between the names used for inputs and outputs 
inside a mixed-logic circuit symbol and the names appearing o u ts id e  
the symbol? 

4-20. There are four possible transitions, Qn to Qn+1, for a clocked flip-flop 
output: 0→0, 0→1, 1→0, and 1→1. These transitions are given the 
names t0, t

! 

" , t

! 

", and t1, respectively. Consider the ways in which we 
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can make a D flip-flop and a JK flip-flop execute each of these 
transitions. Fill in the missing elements in the following table:  

 D flip flop  JK flip flop 
Transition Qn Dn  Qn Jn Kn 

t0 0 0  0 0 X 
t

! 

"        
t

! 

"       
t1       

[In each case there will be two ways that the JK flip-flop can execute 
the transition. For instance, the 0→0 (t0) transition occurs by clearing 
the flip-flop to 0 (having J = 0, K = 1), or by holding the previous 0 
(having J = 0 , K = 0). These cases give rise to the X (don't-care) 
entry in the table.] 

4-21. Compare the asynchronous RS flip-flop and the synchronous JK, D, 
and enabled D flip-flops as to their best uses in digital design. 

4-22. Two types of clocked flip-flop behavior that are occasionally useful are 
the T (toggle) and the SOC (set overrides clear) flip-flop modes. A 
toggle flip-flop changes its output Q only when its input TOG is true 
at the time of the clock edge. A SOC flip-flop behaves like a clocked 
RS flip-flop except that it ignores the value of input R whenever 
input S is true. Write excitation tables defining each type. 

4-23. By means of external gates, convert a JK flip-flop into a type T 
(toggle) and a type SOC (set overrides clear) flip-flop. 

4-24. By analogy with Fig. 4–12, construct a type T (toggle) flip-flop from 
a D flip-flop 

4-25. What is a register? How does it differ from a flip-flop? 

4-26. Construct synchronous modulo-2, modulo-4, and modulo-8 counters 
using: 

(a) D flip-flops. 
(b) JK flip-flops. 
(c) T (toggle) flip-flops. 

4-27. Repeat Exercise 4–26 with ripple counters instead of synchronous 
counters. 

4-28. For a 4-bit ripple counter, demonstrate how the output ripple can produce 
hazards in circuits that receive the outputs. 

4-29. Use counters in your simulator library to build a divide-by-24 circuit. 
The output of your circuit should be true during 1 of every 24 clock 
periods. This and similar circuits are frequency dividers. 

4-30. There are many special counting sequences that are of some interest in 
digital design. The binary counter produces the sequence of binary 
integers. The gray code counter produces a sequence in which exactly 
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one bit changes in moving from one element of the sequence to the 
next. For a 2-bit counter, the gray code is 00, 01, 11, 10. (Where have 
you seen this sequence in this book?) Build a series of 2-bit gray code 
counters using the following approaches: 
(a) Use logic gates to compute the inputs to D flip-flops. 
(b) Use multiplexers to look up the inputs to D flip-flops. 
(c) Use logic gates to compute the inputs to JK flip-flops. 
(d) Use multiplexers to look up the inputs to JK flip-flops. 

4-31. The moebius counter produces another special sequence. The 
algorithm for N bits numbered CN …C1 is 

Ck←Ck+1    w h e n  k = N - 1 … 1  

C N←

! 

C1
 

(a) Design a 4-bit moebius counter, using JK flip-flops as the storage 
elements. 

(b) Design a 4-bit moebius counter using a shift register as the basic 
storage element. 

(c) How many elements are in an N-bit moebius sequence that begins 
with 0? Determine the answer empirically. 

4-32. Use your simulator to make compact symbol for the universal 1-bit 
shift register and store it in your library. Use eight of these shift 
registers to implement an 8-bit shift registers and verify correct 
behavior for: Load, Right-shift, Left-shift, and Hold. 

4-33. Modify the shift register of 4–32c to include a fifth mode of operation. 
This new mode will preserve the most significant (leftmost) bit during 
a right shift; in other words, after the shift, the two leftmost bits will be 
the same. This is called an arithmetic right shift—useful in computing 
with signed two's-complement numbers. 

4-34. Describe the principal characteristics of the RAM, ROM, PROM, and 
EPROM. 

4-35. How do static and dynamic RAMs differ? What advantages do 
dynamic RAMs offer? What disadvantages? 

4-36. Assume you want to calculate the following functions, X,Y,Z by array 
logic as in Figure 4–27c. Show the Design PROMs that realize the 
following sets of logic functions: 

! 

X = A• B•C + A• B•C + A• B•C + A• B•C  

! 

Y = A• B•C + A• B•C + A• B•C (a) 

! 

Z = A• B•C + A• B•C + A• B•C  

 

(b) 

! 

X = A• B + A•C + A•C  
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! 

Y = A• B + B•C + A• B•C   

! 

Z = B•C + B•C + A  
 
4-37. Design PLAs that realize the sets of logic functions in Exercise 

4–48. 

4-38. The following prescription will convert an n-bit binary number 
into an n-bit gray code (n is the most significant bit): 

Grayn = binaryn 

grayk = binaryk 

! 

"  binaryk+l (k = n — 1, ... , 2, 1) 

(a) Tabulate the 5-bit binary and 5-bit gray codes. 
(b) Design a PROM that converts 5-bit binary numbers into 5-

bit gray codes. 

4-39. When k = 1, 2, n, bit k of an n-bit binary number is equal to the 
XOR of the corresponding gray code bits from k through n (n is 
the most significant bit). That is 

  

! 

binaryk = grayk " grayk+1 "!" grayn  
(a) Tabulate the 4-bit gray code and the 4-bit binary code. 
(b) Design a PLA that converts a 4-bit gray code into a binary 

number. 


