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In Part I we presented basic design tools and introduced components used to 
build digital systems at the modular level of complexity. The fascinating part of 
digital design lies before us. We now consider how we may assemble a complete 
system from building blocks. It is in this area that the designer can create 
elegance and beauty, or chaos and headaches. 

To some extent, digital design is an art form. Most designers have had to 
develop a style of digital design by trial and error, and their efforts often have 
not converged to an efficient and aesthetic style. On the other hand, there are 
underlying principles that can be immensely useful to designers. Our goal in this 
book is to start you down the right path, and to take you far enough so that you 
can develop your own designs with a solid sense of good style. 

Design style is a curiously neglected subject, perhaps because a traditional study 
of logic design emphasizes the microscopic transistor and gate aspects of the 
subject. We emphasize a macroscopic view of digital systems by starting from 
the original problem. The result is a top-down approach to design. 

ELEMENTS OF DESIGN STYLE 

Here are the guidelines for good design style: 
(a) Design from the top down. 
(b) Maintain a clear distinction between the controller and the controlled 

hardware (the architecture). 
(c) Develop a clearly defined architecture and control algorithm before 

making detailed decisions about hardware. 

Top-Down Design 

A design starts with a careful study of the overall problem. At this stage, we 
deliberately ignore details and ask such questions as: 

(a) Is the problem clearly stated? 
(b) Could we restate the problem more clearly or more simply? 
(c) If we are working with a subsystem of a larger system, what is its 

relationship to its host? Would a different partitioning of the entire 
system yield a simpler structure? 
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At this stage our concerns are global, and we must stay at that level until we 
have hammered out a sensible statement of the problem and have digested the 
problem to the point where we understand what we must solve. This is essential, 
since any difficulties at this level are serious. No amount of wizardry with 
components can remedy errors in the understanding of the problem. 

After we have clearly specified the problem at the global level, we seek a 
rational way to partition the problem into smaller pieces with clearly defined 
interrelationships. Our goal is to choose "natural" pieces in such a way that we 
can comprehend each piece as a unit and understand the interaction of the units. 
This partitioning process proceeds to lower levels until finally we choose the 
actual library modules. 

Unfortunately, many designers reverse this process by rushing to circuit data 
libraries to find the unit that will "solve” their problem. Often they find a 
module that solves a slightly different problem. Thus enters the infamous 
"patch" to force the problem, which is itself not well defined in the designer's 
mind, to the library part. This process proceeds from the bottom up, often in a 
divergent manner. Many commercial designs bear unmistakable traces of this 
method of design. 

Separation of Controller and Architecture 
One of the first steps in a top-down design is to partition the design into (a) a 
control algorithm and (b) an architecture that will be controlled by this 
algorithm. The top-down analysis will suggest a rough preliminary version of 
the system's architecture, involving abstract building blocks such as registers, 
memories, and data paths. Since the architecture is specific to the particular 
design, there is no general prescription for writing down this preliminary 
architecture. The main guidelines are to make the architecture natural to the 
problem and to design with high-level units rather than with modules and 
voltages. The examples of design in Chapter 6 will illustrate the art of specifying 
the rough architecture. 

Next, we work out the details of the control algorithm at an abstract level. The 
control algorithm is often surprisingly independent of hardware. For example, if 
you were designing a computer, what operations would you expect your control 
algorithm to accomplish? 

(a) Get the next instruction. 

(b) Test to see if operands are needed and get the operands if required, 
making any necessary indirect memory references to indirectly 
addressed operands. 

(c) Execute the individual instruction. 

As you will see in Chapter 6, we may specify a complete flowchart (algorithm) 
for operations like this with almost no knowledge of the specific hardware. 

You should explore the construction of the control algorithm until you have a 
clear understanding of your approach to the solution. The exploration may go 
through several iterations, but eventually you will complete the process, at 
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which time you should turn your attention to the hardware for the architecture 
that is suggested by the control algorithm. The algorithm will guide you to the 
hardware. Note how powerful this concept is. We have a tool that allows us to 
solve a problem in a rational way instead of randomly looking at modules and 
wondering if they will fit into the design. 

We can formalize the controller-architecture separation with the diagram in Fig. 
5-1. The controller issues properly sequenced commands to the controlled 
device. These commands make the architecture perform the actions dictated by 
the control algorithm. Usually, the controller will need status information from 
the architecture that serves as decision variables for the control algorithm. As 
the design matures, the controller's command outputs and status inputs go from 
abstract concepts of control to Boolean variables, and finally to voltage 
representations of the Boolean variables. 

 
Figure 5-1. The structure of a state machine 

Consider the following example. A problem requires that a word be written into 
a memory. The preliminary architecture for the problem is just a black box for 
the memory, the details of its inner construction being deferred until later. The 
memory will require four items of input: a memory address MA to tell where to 
write the data, a word of DATA for input, a line R/W to tell whether to read or 
write, and a GO signal to start the read or write operation. The only status 
returned by the memory will be memory cycle complete CC. 

Figure 5-2 is the functional diagram corresponding to this analysis. The 
command lines are: 

MA (n lines) 
DATA (m lines) 
R/ W (1 line) 
GO (1 line) 

The parameters n and m are determined by the characteristics of the memory 
needed by the problem. For instance, a 1,024-word by 8-bit memory would have 
n = 10 (1,024 = 2

10
) and m = 8 (each word of memory has eight bits). The status 

line is CC. 

 
Figure 5-2. A diagram of a memory write machine 



Chapter 5 Design Methods 4 

We now have a good idea of what signals the controller and architecture must 
generate and accept, even before we know what hardware we will use to build 
the controller or what the memory box is like inside. We choose the memory 
command lines by realizing that we must have data to write into memory and a 
location where it must be written. The structure in Fig. 5-2 is not affected by the 
actual type of memory. 

We can say something about the nature of the control algorithm that initiates a 
memory write operation, without knowing exactly how we will translate that 
algorithm into hardware. The algorithm must look something like Fig. 5-3. The 
purpose of the first step STW is to issue a GO signal to the memory, along with 
the necessary data and commands to initiate a writing operation. The next step 
WAITs until the memory has finished the writing. 

 

 
Figure 5-3. Algorithm for writing to a memory 

We can accomplish an amazing amount of the design by a general consideration 
of the problem. Carry the top-down analysis as far as you can, because decisions 
at this level are more easily altered than they will be once the hardware has 
intruded. 

Refining the Architecture and Control Algorithm 

We are now ready to move down one level. We have sketched out the algorithm 
by ignoring the hardware as much as possible; instead we were trying to reduce 
our problem to high-level, abstract statements of control and architecture. The 
only consideration about hardware introduced thus far were general ones that we 
could state from a knowledge of the variables required for the operation of 
abstract building blocks such as memories, registers, and arithmetic units. We 
now begin to refine the control algorithm by introducing more detail. 

As we refine the algorithm, we need a more detailed knowledge of the 
architecture of the system. We therefore begin to elaborate the architecture as a 
set of building blocks, moving carefully through a set of high-level building 
blocks toward a selection of the major hardware. We choose the architectural 
elements by asking what specific building blocks the developing control 
algorithm requires; we do not select elements by looking in a library and saying, 
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"Hey, this is a neat module—I must fit it into my next design”. 

A good architecture will be simple, clear, and easy to control. If it is not, there is 
no way to rescue the resulting mess with exotic circuits or Boolean algebra. If 
the architecture is clear and simple, the rest of the design will be relatively 
straightforward. This step—the first introduction of hardware—is an important 
point in the design. 

After we choose the major building blocks, we know what control signals they 
will require. At this point, we tabulate these signals and then quit worrying 
about the hardware. In fact, we suppress consideration of the hardware lest it 
capture our thought processes and cause us to lose sight of the algorithm we are 
trying to develop. Let the algorithm drive the design process as much as 
possible. Now we can continue with an elaboration of the algorithm, whose 
function is to provide a properly sequenced set of commands to the architecture. 
Spend a large fraction of the total time for the project on the detailed algorithm-
architecture phase. 

After we have completely specified the algorithm, we can reconsider the 
architecture and our choice of building blocks. The detailed construction of the 
algorithm will usually reveal areas of the design that we can simplify or speed 
up by using slightly different architectural components. We incorporate these 
changes into the architecture and make the corresponding changes in the 
algorithm. At this point the process should have converged to a final solution. 
We should have: 

(a) The architecture. This should include a detailed set of components 
and data paths for the controlled device—usually a specification of 
the actual library modules for the major components such as registers, 
ALUs, and memories, and a statement of the command signals that 
these components require and the status signals that they produce. Our 
specification of the architecture does not include any logic required to 
generate these commands, since the generation of commands is 
assigned to the control algorithm. 

(b) The algorithm. This will produce a properly sequenced set of 
command signals to make the architecture perform the original 
problem. It does not include the hardware to implement the algorithm. 
We can derive the hardware from the algorithm in a straightforward 
and mechanical way, as you will see later in this chapter. 

If by this time the process has not converged to a stable solution, you probably 
had trouble at an earlier stage of the design process. In such circumstances, 
proceeding further is fruitless; you should go back to the beginning and start 
over. Do not "kludge" your solution. You have not yet burned any fuses or 
drawn any hardware circuit diagrams, so beginning anew is relatively painless. 

And now, a secret: whether in hardware or software, no one designs a system 
strictly from the top down. A knowledge of low-level components and 
techniques always influences the design, even at the highest levels. The best top-
down hardware designers have an intimate knowledge of hardware, and this 
knowledge tempers and guides the high-level design decisions. As their 
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understanding of the design expands, good designers use their knowledge of 
lower level technology to avoid unproductive approaches. The designer dips 
repeatedly into lower and more detailed levels for short excursions, but 
invariably returns to the present top level. The top-down approach has the great 
virtue of providing the discipline that keeps one thinking at the highest useful 
level. We like to imagine that a complex design proceeds linearly from the top 
to the bottom, but that is rarely so. But whenever you dip down, your top-down 
training will pull you back up as soon as possible. 

ALGORITHMIC STATE MACHINES 
The control algorithm plays a major role in a digital design, so we need a good 
notation for expressing hardware algorithms. The notation should assist the 
designer in expressing the abstract algorithm and should support the conversion 
of the algorithm into hardware. There are several ways of describing the control. 
For synchronous circuits, the ASM chart technique is the superior notation. 
ASM stands for algorithmic state machine.* The name is appropriate, since all 
controllers are state machines, and we are trying to translate algorithms into 
controllers. The ASM chart is a flowchart whose notations superficially bear a 
strong resemblance to the conventional software flowchart. The ASM chart 
expresses the concept of a sequence of time intervals in a precise way, whereas 
the software flowchart describes only the sequence of events and not their 
duration. 
* T. E. Osborne developed the ASM chart notation and C. R. Clare described the method in his 
book, Designing Logic Systems Using State Machines (New York: McGraw-Hill Book Co., 1973 

ASM Chart Notations 
States and Clocks 

An algorithmic state machine moves through a sequence of states, based on the 
position in the control algorithm (the state) and the values of relevant status 
variables. The concept of a state implies sufficient knowledge of present and 
past conditions to determine future behavior. It is the task of the present state of 
the system to produce any required output signals and to use appropriate input 
information to move at the proper time to the next state. In most of this book we 
are dealing with synchronous systems whose state times are determined solely 
by a master clock. The most convenient form of clock is a periodic square-wave 
voltage: 

 
The clock event that triggers the transition from one state to another and other 
actions of the system is called the active edge, and in synchronous systems is 
usually the rising (L→H) edge of the clock. In a synchronous system, the clock 
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will thus have T = H. Commonly, the clock period t ranges from sub 
nanoseconds to several microseconds. The frequency f of the clock is its number 
of oscillations per second. Frequency and period are related by the expression 

  

! 

f =
1

t
 

The unit of frequency is the Hertz (Hz), which is defined as one oscillation per 
second. Convenient units are: 

kilohertz (KHz = 10
3
 Hz) 

megahertz (MHz = 10
6
 Hz) 

gigahertz (GHz = 10
9
 Hz). 

The clock's frequency may vary, and the clock may even stop—desirable during 
the debugging phases of a design. Within reasonable limits, the duration of the 
high portion of the clock waveform in relation to the total clock period (the duty 
cycle) is unimportant. The crispness and reliability of the active clock edge is of 
extreme importance, and designers of systems pay close attention to the 
production and distribution of an excellent clock signal. 

States. Each active transition of the clock causes a change of state from the 
present state to the next state. The ASM chart describes the control algorithm in 
such a way that, given the present state, the next state is determined 
unambiguously for any values of the input variables. The symbol for a state is a 
rectangle with its symbolic name enclosed in a small circle or oval at the upper 
corner: 

 
We would represent a purely sequential algorithm as an ASM chart of a 
sequence of states, as in Fig. 5-4, which also shows the corresponding division 
of the time axis: 

 

 

Figure 5-4. A purely sequential ASM and the corresponding time axis 

A sequence is an inherent property of an ASM chart; state Y follows state X, 
and so on. It is cumbersome to show time relations with a timing diagram such 
as the above; therefore, you should learn to think of time as rigorously implied 
in the ASM chart notation. 
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Outputs. The function of a controller is to send properly sequenced outputs 
(voltage command signals) to the controlled device according to some 
algorithm. To indicate an output, we place the command description within the 
appropriate state rectangle. In this book we use several notations for outputs. 
Depending on our depth of understanding of our design and on the level of detail 
we wish to convey, we may use informal expressions of actions or detailed 
statements of particular output operations. Figure 5-5 contains some examples. 
In state PRINT.LINE, the expression "Start print cycle" represents a set of 
actions, as yet not fully elaborated, that initiates a printer cycle. The arrows in 
the next two lines imply actions that are to be consummated at the end of this 
state; at that time LINE is to be loaded into PRINTBUF, and the AC register is 
to be cleared. The fourth line, MOVING, calls for the assertion of the signal 
MOVING (making MOVING true) during this state. The last line means that the 
output variable STATUS is to have the value of the variable ERRFLAG (T or F) 
during this state. Other output notations may be useful; improvising notations is 
fine as long as you define your terminology. 

 Figure 5-5. ASM output notations 

Branches. Purely sequential ASMs are of little interest because they are usually 
not powerful enough to describe useful algorithms. We need some way to 
express conditional branches so that the next state is determined not only by the 
present state but also by the present value of one or more test (status) inputs. Our 
symbol is the same as in conventional flowcharts for software: the diamond or 
diamond-sided rectangle. 

 
We incorporate this symbol into the ASM chart by appending it to a state 
rectangle, placing the description of the test input inside the diamond, as in Fig. 
5-6. 

 
Figure 5-6. An ASM with a conditional branch 
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In this case a portrayal of the time line would be 

 
The decision to jump to one of the two states B or C is made during state A, and 
the jump occurs at the end of state A. In hardware implementations the voltage 
representing input X must be stable for some time before the decision. Ideally, X 
should be stable for the entire clock period of state A, for then the hardware that 
decides to jump to B or C has the maximum time to settle. It is important to 
realize that a test does not require a separate clock period—it is done "in 
parallel" with the actions of the parent state rectangle and thus is part of the 
parent state. 

We are not limited to two-way branches from a state. We may draw sequences 
of test diamonds or we may have more than two paths coming from the same 
diamond. Two ways of representing a three-way branch are shown in Fig. 5-7. 
The test structure in Fig. 5-7a is a diagrammatic representation of a truth table in 
which neither P nor Q appears to dominate. Figure 5-7b conveys the feeling that 
the test of variable P is of higher priority than the test of Q. Which form is 
preferable depends on the designer's thought process. Use the ASM notations 
that best describe your design. 

 

 

 
(a)  (b) 

Figure 5-7. Alternative representations of a three-way branch 

Conditional outputs. A command written within a state rectangle indicates that 
the controller is to produce the output whenever the algorithm is in that state. 
Sometimes we want a command to occur only when some other condition also 
exists. We call such a command a conditional output and specify it within an 
oval, as in Fig. 5-8. Command CMD1 will appear for one state time whenever 
the ASM is in state P. The command CMD2 will occur during one state time 
whenever the ASM is in state Q, but when the ASM is in state P, CMD2 will 
occur only if test input Z is false. In this example, CMD2 is an unconditional 
output in state Q and a conditional output in state P.   * 
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Figure 5-8. An ASM with a conditional output 

Test inputs may serve two functions in ASM charts: they may help specify the 
next state and they may control the issuing of conditional outputs. Ovals for 
conditional outputs and diamonds for tests of inputs belong to the parent state, 
since the activities will occur during the same state time. A state thus consists of 
its rectangle, which is always present, and any test diamonds and conditional 
output ovals associated with that state. Unconditional outputs are a function only 
of the parent state; conditional outputs depend on both the state and the path 
within that state. It would be appropriate to draw a dashed line around the entire 
structure for each state, but we usually do not do this because the chart defines 
each state without this aid. 

* An ASM with only unconditional outputs is equivalent to the Moore machine of 
traditional sequential circuit theory; the traditional Mealy machine has conditional 
outputs. The ASM formulation subsumes both traditional cases. 

This is the entire ASM chart notation. Our goal is to use it to help us build 
digital circuits. In the following chapters we emphasize the design phase, the 
difficult part of our work. Once we have an architecture and a control algorithm, 
we must then implement them. In this chapter we next present some standard 
and systematic methods for realizing any ASM chart control algorithm. 

REALIZING ALGORITHMIC STATE MACHINES 
Once we have expressed the control algorithm as an ASM chart, it is a simple 
job to express the flow of control as hardware. We describe two methods—a 
traditional technique and a style-driven method, deferring to an appendix two 
elaborations of traditional methods. 

Our task is to construct a state generator for a given ASM. In any state machine, 
the concepts of present state and next state are vital. The state generator's task is 
to record the present state and generate the next state. State machines are 
sequential circuits, and to keep track of the present state we need a memory. In 
this part of the book, we use flip-flops as the state memory. There are two ways 
to express the present state in a flip-flop memory. We may assign a binary 
number to each state and express the present state as an encoding, using its 
binary number. In this scheme, n flip-flops will encode up to 2

n
 states. We may 

describe a state by its name or by its number in binary or in decimal, as we find 
convenient. Alternatively, we may avoid the encoding by assigning one flip-flop 
to each state. We will use each of these approaches. 
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Traditional Synthesis from an ASM Chart 
The traditional technique for state generation is to use an encoded representation 
of the present state and compute the code for the next state. The bits of the code 
are the state variables: n state variables describe up to 2

n
 states. The term state 

variable used in this way is unfortunate, since there is a more important use for 
this term—to specify the name of a logic variable for each state. Nevertheless, in 
this section, we use the term in the traditional way. We make an arbitrary state 
assignment of binary state variable values to states. On the ASM chart, we show 
the binary assignment for each state above its state rectangle on the right-hand 
side. We might choose the state assignment shown in Fig. 5-9. We need not 
label the test diamond or the conditional output oval since they are part of state 
00. The state assignment is arbitrary. There may be more hardware associated 
with one state assignment than another, but this is not an important factor. The 
two state variables B and A in Fig. 5-9 specify an address that points to the 
present state. If we could compute the next address and put it into the state flip-
flops, we would then be pointing at a new state. As you might guess, we can use 
gates to build a combinational circuit to compute the next address. Figure 5-10 is 
the model of this process. This figure displays only the control portion of the 
digital system, not the architecture. 

 
Figure 5-9. A simple ASM with a state assignment 

We can use either JK or D flip-flops for the state variables. JK flip-flops 
usually result in less combinational logic than D flip-flops, but they also require 
twice as many input lines. The JK form is more compact but yields more 
obscure results. In this example, we use D flip-flops to provide a more direct 
comparison with the methods to follow. 

For the ASM chart in Fig. 5-9, the state generator model of Fig. 5-10 has one 
status input Z, two command outputs CMD1 and CMD2, and two state flip-flops 
B and A. The combinational logic must compute the value of the next-state 
address: 

Present Next 
B A Z B(D) A(D) 
0 0 0 1 0 
0 0 1 1 1 
0 1 X 0 0 
1 0 X 0 0 
1 1 X 0 0 
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The condensation of rows on variable Z arises because the move from states 10 
or 11 does not depend on Z. 

 
Figure 5-10. A model of an encoded ASM state generator 

The state assignment 01 is a possible pattern of the flip-flop's outputs but does 
not label any state in the algorithm of Fig. 5-9. Hardware is perverse and may 
get into this state, for example during power-up, when flip-flops may settle into 
random values. In our example, pathological behavior would result if the next-
state logic computes 01 whenever the present state is 01. We would be locked 
into state 01 and could not get out unless we did something drastic, such as shut 
off system power. Clearly, if we ever get into state 01, we must get back to the 
main algorithm loop. Thus, we have arbitrarily chosen to go to state 00. We 
must always take into account all unused state assignments in encoded designs 
of state generators. 

We may write the equations for state flip-flop inputs B(D) and A(D) by 
inspecting the logic table above. They are 

! 

B(D)= B•A•Z+B•A•Z = B•A 

! 

A(D)= B•A•Z  

When we are designing more complex state machines, K-maps may help to 
simplify the expressions for the state flip-flop inputs. 

This completes our discussion of the design of the state generator. But the 
purpose of the algorithm was to produce properly sequenced outputs. An 
examination of Fig. 5-9 yields these equations for the outputs: 

! 

CMD1= STATE _P = B•A (5-1) 

! 

CMD2 = STATE _P •Z+ STATE _Q = B•A•Z+B•A (5-2) 

The hardware for the ASM is shown in Fig. 5-11. 
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Figure 5-11. Traditional synthesis of the ASM in Fig. 5-9 

Initializing the State Machine. 

We have bypassed an important aspect of state machines in our treatment of  
Figures 5-9 and 5-11. Now it’s time to face up to this omission. We have 
properly handled the situation where the state generator winds up in state 01 for 
whatever reason—it should transition back into the ASM, preferably at the 
starting state. What we have not solved is what happens when power is turned 
on? The machine could wake up in any of the 4 states 00, 01, 10, 11. In real 
world designs we insist on means to reset the state generator, forcing it into a 
known initial state. Modifying the ASM in figure 5-9 leads to figure 5-12. 

 
Figure 5-12.  A proper ASM 

Every real world ASM must incorporate means to initialize it to a known state—
here shown by the RESET arrow; and also must carefully handle extra states 
like state 01. Failure to do so will immediately mark you as an inexperienced 
designer. The hardware of Figure 5-11 properly handles the extra state, 01, but 
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ignores the reset problem; direct clear to the rescue! Remember that direct clear 
and direct set manipulate flip-flops independent of clocks. We can use them to 
force state flip-flops into desired values at any time and therein lies their power 
and danger. 

Generating proper reset signals. Obviously, any reset switch must be 
debounced because bounces last on the order of milli-, or micro-, seconds while 
system clocks are churning along a GHz frequencies. Second, the debounced 
reset signal must be synchronized otherwise you could get truncated commands 
(often called “runt” pulses). Consider what would happen if the state machine 
had just entered state Q, thus generating CMD2, and then you hit the reset 
switch shortly thereafter. CMD2 would not last for a full clock cycle, it would 
be a runt pulse, and may or may not last long enough to complete its business. 
These considerations lead us to a proper hardware implementation shown in 
Figure 5-13. From now on we will assume all reset signals follow this protocol. 

 
Figure 5-13. A proper implementation of the ASM of Figure 5-12 

Comments. The approach we used in this section—to compute the code for the 
next state—is a traditional method. JK flip-flops used to store the state variables 
may lead to somewhat more compact next-state logic than D flip-flops, since the 
JK flip-flop is the more flexible device. 

Unfortunately, the traditional method results in no obvious correspondence 
between the hardware for the state generator logic and the algorithm it 
represents. This is true of D flip-flops, and even truer of JKs. Every change in 
the algorithm, no matter how minor, requires a fresh design of the next-state 
combinational logic. The traditional approach violates our goal of clarity in 
design. Next-state generation is the standard implementation process associated 
with ASM charts, and we would like both the synthesis and the analysis of our 
state generators to be as straightforward and mechanical as possible. The next 
technique, using one flip-flop per state in an un-encoded representation differs 
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dramatically in the method by which the next-state combinational logic is 
generated. 

The One-Hot Method of ASM Synthesis 
In this method of generating states, we use one D flip-flop for each state. There 
is no encoding of the states, so there is no need to specify a state assignment as 
we did in the previous methods. Since we must always be in only one state at a 
time, we must arrange for only one of the state flip-flops to be true during each 
state time. Therefore, we must compute with combinational logic the value T or 
F of each flip-flop's input to provide the one true input required to produce the 
next state of the system. This property of exactly one flip-flop being true at a 
time gives the method its name, "one-hot." 

We may make exactly one flip-flop true with the aid of a tabular presentation 
slightly different from the one used in the previous method. Consider the one-
hot implementation of the ASM in Fig. 5-12. For this 3-state system, we need 
three D flip-flops labeled with the states' names. Table 5-3 contains the 
information needed to produce the inputs to the one-hot flip-flops.  

 
Figure 5-14. A one-hot ASM 

 
Table 5-3 State transition data for a one-hot 

implementation of the ASM in Fig.5-14 

Present state Next state Condition for 
transition 

P Q Z 

 R 

! 

Z  
Q P T 

R P T 

The equations for the flip-flop inputs follow from the table: 

! 

NEXT _STATE _P = P(D)= R +Q  

! 

NEXT _STATE _Q = Q(D)= P •Z  
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! 

NEXT _STATE _R = R(D)= P •Z  

 

 
Figure 5-15. A one-hot state machine 

Several things: 
(a) Next state equations and hardware can be trivially read from the ASM 
(b) The hardware leads directly back to the ASM 
(c) RESET.L signal clears flip-flops Q and R but sets flip-flop P 
(d) The one-hot method usually uses marginally more hardware than a 

traditional encoded state machine but with modern gate arrays you will 
have a surfeit of flip-fops and gates so this is of little concern. 

(e) ASM size extends gracefully, adding one more state is easy, it may be 
harder with encoded control if you cross a 2n—2n+1 boundary 

These are powerful incentives for preferring the one-hot method and we 
recommend you use it in your work unless special circumstances dictate 
encoded control. 

Let us go through a somewhat more complex example, but first let’s look at an 
optimization that’s trivial for a mixed logician, but would likely give apoplexy 
to a positive logician. 

 
This transformation is transparent, but direct set and direct clear are trickier. If 
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direct set = T then the Q pin will go H in either symbol (after all, they are 
physically identical devices and pins). Remember that Q inside the rectangle 
represents a pin, not a signal. If you want to force a signal, X, attached to pin Q 
in the left symbol, to go true you must drive direct set T, and then the polarity of 
X will be X.H. If you want to force a signal, Y, attached to pin Q in the right 
symbol, to go true you must drive direct clear T, and then the polarity of Y will 
be Y.L. 

 

 

 
This was a fairly simple illustration. With some familiarity with the one hot 
controller method, you could have read off the flip-flop inputs directly from the 
ASM chart without using a transition table. Let's do a more complex example—
the ASM in Fig. 5-16.  

 
Figure 5-16. A complex 4-state ASM 
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Figure 5-17. State generator for 5-16 (ignoring RESET) 

Figure 5-17 is an implementation of this controller, assuming that the status 
inputs W, X, Y, and Z are available in both voltage forms. Again, there is a one 
to one correspondence between the ASM and hardware; to convince yourself, 
you should work backwards from the hardware in Figure 5-17 to recover the 
parent ASM. 

We ignored initializing to concentrate on next state generation—as a working 
designer you will never have that luxury. We leave initializing as grist for your 
mental mill; you will need to modify Figure 5-17, using flip-flops with direct set 
and direct clear, and you may assume the RESET switch signal has been 
properly debounced and synchronized. RESET logic is standard, all state signals 
must be set to F, except the initial state signal, P, which should be set to T. 
(setting the signal Q to F will not be the same as resetting the corresponding 
flip-flop, which has been used in “inverted form” according to the previous 
identity) 

One Hot vs. Encoded State Machines. The one-hot method has the advantages 
of ease of design and clarity of circuit. The inputs to the state flip-flops directly 
describe the conditions under which each state is the next state. As you know, 
the mixed-logic notation provides for ease of analysis of circuits, so we may 
read off the next-state conditions from the circuit diagram. The size of the state 
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generator circuit does not grow rapidly with the number of states. At first you 
may be horrified at the idea of using a flip-flop for each state instead of the more 
compact encoded scheme used in the other methods. However with modern 
gate-arrays you will have more flip-flops than you can use for any conceivable 
state machine. 

The beautiful properties of one hot state machines makes them our preferred 
implementation technique, “but”; real hardware is perverse and conceivably, 
through noise, an act of God, (or the design, heaven forbid!), two state flip-flops 
could be set. This is the “two hot” problem. Encoded state machines never have 
that problem, no matter what happens to the state flip flops they always encode 
exactly one state. If you are making a device that will be mass marketed, and has 
a simple ASM, say 8 states or less, perhaps encoded control would be 
appropriate. If you fall into this niche situation, investigate the MUX method for 
implementing ASM’s, covered in appendix *. 

DESIGN PITFALLS 

In our study of design, we have made several important assumptions about our 
systems. 

(a) We have assumed that our ASMs are synchronous, with changes in 
state and other actions governed by a master clock. 

(b) We have assumed that at the time of a state change, all inputs to the 
ASM are stable; in other words, inputs change   synchronously with the 
system clock. 

(c) We have assumed that the system clock edge reaches each element in 
the circuit simultaneously. 

Let's investigate the effect of violating these conditions. Conditions (a) and (b) 
are design decisions of great importance, violation of which will lead to serious 
problems. Condition (c) is a subtle matter that we enforce by good construction 
practices. Let's consider (c) first. 

Clock Skew 

In a synchronous system, it is important that every clocked element in the 
system receive its clock edge at precisely the same time. To see why this is so, 
consider the general model of a controller with just two state flip-flops, shown in 
Fig. 5-18. 
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Figure 5-18. A model of a two flip-flop controller 

Proper synchronous operation results when the CLK_A and CLK_B active 
edges occur at the same instant. In that case, the combinational logic network 
will compute new values for A(D) and B(D) based on the current values of A 
and B and the status signals and, shortly after the clock edge arrives, A and B 
will assume new values equal to the old values of A(D) and B(D). The changing 
flip-flop outputs will throw the combinational logic network into shock as it 
adjusts to the new inputs and computes new values of A(D) and B(D). The 
combinational logic outputs will experience hazards and delays caused by the 
finite propagation time of the gates. A(D) and B(D) may therefore have 
momentary wrong values but will eventually settle to levels predicted by 
Boolean algebra and will then wait for the next clock edge to come along. 

Now suppose that CLK_B is delayed with respect to CLK_A. Signal A changes 
when CLK_A fires; this will throw the gates into shock as before, and both 
A(D) and B(D) may have momentary wrong values for a short time. Suppose 
that the "late” CLK_B edge comes during this time of instability; then B can 
record a false value. Even more galling: suppose that before CLK_B fires the 
combinational logic stabilizes to "new" values of A(D) and B(D), based on the 
new value of A and the old (unchanged) value of B. At this time, both A(D) and 
B(D) can be incorrect. Then, when CLK_B fires, an incorrect B is stored, and 
this change ripples through the logic. This phenomenon, clock skew, occurs 
when the clock edges do not appear simultaneously at all clock inputs. Clock 
skew can arise from gates in the clock path, capacitive loading, or from different 
wire lengths between the clock source and the clock inputs. 

If you are working with gate arrays your system will likely be contained in one 
chip and you won’t have to worry about supplying board-wide clocks; outside 
the gate array is another matter. Putting gates in the clock can introduce skew. 

Don't gate your clock. Gating a clock is bad practice because it introduces skew 
(and may introduce hazards on the clock line). Suppose that flip-flop A responds 
to a positive clock edge but that we use a different type of flip-flop for B that 
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acts on a negative clock edge. We may be tempted to create the CLK_B signal 
by running an inverter from CLK_A, but this is just a case of gate-created clock 
skew. To avoid this type of skew, it is best to drive all flip-flops with the same 
active clock edge, thereby eliminating the need for inverters in part of the clock 
system. In all our clocked building blocks for synchronous design, we use 
positive-edge clocks. 

Beware different length of clock paths. In the rare case where you have to 
provide a board-wide clock it behooves you to pay as much attention to skew as 
integrated circuit designers do for intra-chip clocks. It is desirable to have the 
clock distribution lines spread radially from the clock source to the separate 
elements of the system rather than linking them together in one long chain. 
When designing large systems you may have to buffer the clock lines to build up 
sufficient power, as shown in the radial clock distribution system in Fig. 5-19. 
This "gating” of the clock lines is acceptable if the three buffers are all of the 
same kind and, preferably, in the same integrated circuit package, so that they all 
have precisely the same propagation delays. The distribution wires should also 
be of the same length, within a few inches, since 8 inches of wire represents 
about 1 nanosecond of signal propagation time. 

 

Figure 5-19. A buffered 
board wide distribution 
system for the master 

clock 

Asynchronous Inputs and Races 

Design assumption (b) is that all the inputs to an ASM change synchronously 
with the master clock. In practice, inputs often arise from sources outside our 
digital circuit, and the timing of changes in these inputs is beyond our direct 
control. These inputs are asynchronous, and we usually append an asterisk * to 
their variable name to indicate their asynchronous nature. To see why 
asynchronous behavior is troublesome, consider the three-state ASM fragment 
in Fig. 5-20. We assume that we have made the (encoded) state assignment 
shown in the figure and that the sole test input, IN*, is asynchronous. For the 
moment, ignore the conditional output. 
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 Figure 5-20. An ASM fragment that illustrates races 

Transition races. Each state flip-flop requires that its input be stable during the 
setup time prior to the clock edge. This allows the input values to circulate 
through the internal circuitry of the flip-flop and stabilize to await the clock 
edge. If the flip-flop inputs change during this "setup time," the value of the flip-
flop's output after the clock edge will be unpredictable. After settling down, the 
output will assume either a T or F value, but which value is uncertain. 

Now assume that the ASM in Fig. 5-20 is in state 00, and IN* = T. Then the 
inputs to both state flip-flops are 0, and the system is preparing to move next to 
state 00, the same state as before. If IN* changes to F, the inputs to flip-flops A 
and B will change to 1, in preparation for the move to state 11. If the change in 
IN* occurs during the flip-flop setup time, we cannot predict the changes in the 
flip-flops. Thus the next-state code may be 00, 01, 10, or 11, depending on the 
outcome of the race at the flip-flop inputs. Although we might argue that either 
state 00 or state 11 is an acceptable next state, clearly to reach states 01 or 10 is 
a calamity. This situation, in which the next state depends on the exact timing of 
the flip-flop input changes, is called a transition race. The situation is obviously 
intolerable and you must be certain that such races do not appear in your 
designs. Before considering the solution to the problem, let's investigate another 
type of race. 

Output races. Now see what happens to the conditional output CMD1 in the 
ASM of Fig. 5-20 when IN* changes at an awkward time. For the moment, 
ignore the possibility of transition races. In state 00, when IN* is true, CMD1 is 
false, whereas when IN* is false, CMD1 is true. A change in IN* will cause a 
corresponding change in CMD1. If IN* changes from T to F late in the state 00 
time, CMD1 will be true for only a short part of a clock time, before the system 
moves into state 11. The possibility of a "runt pulse” for CMD1 is in itself a 
serious matter, since the output CMD1 may be used in situations that cannot 
tolerate such a short pulse. This problem is called an output race; it is a direct 
result of an ASM output being conditional on an asynchronous input. For 
example, suppose that the purpose of CMD1 is to set a flip-flop that lights a 
light announcing that we have left state 00. If IN* changes so late in the clock 
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cycle that the flip-flop is not set to true, we will be in state 11 and the light will 
still be off. 

The combination of the transition race and the output race in this ASM may lead 
to numerous ludicrous results, depending on the exact reactions of the flip-flops 
to the changing IN* input. We could end up in state 00 with the light on, or in 
state 01 with the light off, and so on. 

Avoiding races. Asynchronous inputs are at the root of the problem of races. 
Asynchronous inputs are fatal, dangerous, or at best difficult to use safely. There 
is no way to avoid output races except to avoid conditional outputs that depend 
on asynchronous inputs. The engineering literature is full of elaborate methods 
for skirting around the transition race problem by tinkering with the state 
assignments. The proper approach for good design style is to eliminate the cause 
of the problem—the asynchronous input. We may do this by synchronizing the 
input using a D flip-flop clocked by the system clock. The ASM will test the 
output of this flip-flop, and since this output only changes synchronously with 
the clock, there will never be a race in the ASM caused by that input. So we 
have a golden rule for synchronous design: 

Don't allow dangerous asynchronous inputs into your ASM chart. 
You must be alert to identify asynchronous inputs—they have a habit of 
sneaking into the design. In our example, the input was easy to detect, since we 
had added a * to the signal name, but in practice, adding the asterisk is your 
responsibility, whether or not the original name was so equipped. Many useful 
synchronous integrated circuit chips have asynchronous control inputs for 
clearing, setting, or loading. The only routine use that we make of such inputs is 
as a master clear signal to be asserted when power is first applied or when the 
system "hangs up." In the one-hot controller method you saw an illustration of 
this usage; most controllers will require one such master clear signal. In other 
circumstances, avoid using asynchronous control signals. 

Asynchronous ASMs 

Our ASMs have all been synchronous, with a master clock to define the times 
for state transitions. It is possible to build asynchronous state machines, which 
depend not on a clock but on changes in the inputs themselves to create 
transitions between states. Troubles abound in this form of design, primarily 
because of these factors: 

(a) All inputs must be clean, with no glitches, since any instability or noise 
on the input signals may induce spurious state transitions. 

(b) The theory of asynchronous circuits is complex and diverse, involving 
numerous special cases and usually invoking unacceptably restrictive 
design conditions. 

(c) The debugging of asynchronous systems is difficult. 

We will not instruct you in the theory of asynchronous circuits, beyond the 
microscopic view we took in Chapter 4. Rather, we wish you to avoid this mode 
of design wherever possible. In Chapter * you will encounter a form of 
asynchronous ASM used to connect a peripheral device to a minicomputer, but 
this special case is as far as we will take the subject. If at some later stage in 
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your design career you wish to investigate asynchronous circuits, you will find a 
rich literature. However, we wager that, after your investigation, you will still 
refrain from designing circuits in this mode. 

Sidestepping the Pitfalls 

Getting into trouble in digital design is easy. Asynchronous methods constantly 
expose the control algorithm to every signal change, intentional or accidental. 
Designing each circuit to be secure against such an unceasing attack requires 
enormous effort. Asynchronous control, despite its tempting generality, is too 
tedious to use as a major tool in design. 

Synchronous methods ease the pressure on the designer by isolating the 
sensitive periods into small, regular intervals preceding clock edges. Expressing 
problems synchronously effectively moves the asynchronous difficulties away 
from the algorithm into the clock. This is a great simplification. We must work 
hard to make the synchronous clock system reliable, but the procedure is the 
same for all designs. In return, we gain breathing room in the algorithm. 
Synchronous design causes specialization of the hardware, where extreme 
versatility is rarely needed, yet it decreases the number of special cases in the 
process of algorithm design, giving designers valuable systematic methods. 

As you saw in Chapter 4, the problem of metastability in the outputs of 
sequential circuits is inherent in every design. Wherever two or more inputs may 
change at the same time, metastability is possible. In asynchronous design, 
virtually every input may present this problem. In synchronous design, the 
asynchronous external inputs, which we routinely run through synchronizing 
circuits, are trouble spots. By synchronizing these inputs we have greatly 
simplified the internal structure of our control algorithm, but we have not 
eliminated the possibility of metastability. In Appendix * we offer 
recommendations for dealing with this irritating issue. 

Debugging Synchronous Systems 

Not only do synchronous methods ease the designer's worries, but they also 
support a powerful debugging technique. The system clock controls the speed of 
a synchronous design. Consider the benefits of a design that will behave 
properly not only at high clock speeds but also at slow speeds, even at zero 
speed. We are particularly interested in the zero-speed case, because with this 
feature we may freeze the system in any state by stopping the system clock. We 
may then debug the logic at leisure. Compare this technique with a system that 
requires a closely controlled clock frequency. Error conditions may be 
observable for only one clock cycle. If maintenance engineers cannot slow or 
stop the machine at will they must troubleshoot it in real time. Debugging 
systems at high speed is much more complicated than freezing the machine in 
the erroneous state. 

Synchronous designs that work at a variety of clock speeds, including zero, are 
called static. The benefits of static systems are so great that we should strive to 
use this technique whenever possible. After you have debugged a few dynamic 
(non-static) systems, you will better appreciate the beauty of static designs. In 
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Chapter 6, we develop a system clock module for use in static designs. 

CONCLUSION 

This ends our exposition of basic design methods. We have covered the basic 
building blocks and there were remarkably few types. Next, for expressing 
algorithms, we described a language that contained only three constructs: the 
state box, the conditional output oval, and the conditional branch diamond. With 
these simple tools we can create digital systems limited only by our imagination. 

The basic elements of style emerge from a desire to achieve understandable 
designs. We have discovered through bitter experience that opaque designs are 
enormously expensive in the long run. A good designer will use a design 
approach that always promotes clarity. We mention three important aspects of 
such an approach: 

(a) Good documentation. It is tempting to avoid the drudgery of 
documentation. After all, the real fun is in the design and debugging. It 
is hard enough to document a simple design; complex designs are 
seldom documented well enough for anyone but the designer to 
understand. Often, after a few months, even the designer cannot fathom 
the design. A good designer will adopt techniques that encourage or 
require good documentation during the design process. Mixed logic, 
functional building blocks, and ASM charts are powerful aids to 
documentation, built into the design discipline. 

(b) Modular designs. Nearly every design will require small changes 
during its useful life. Monolithic designs are hard to understand and 
modify. Our goal is to build more accessible designs, so that we may 
change part of the complete system without the change rippling through 
the rest of the design. Too often, digital designers overlook the cost of 
servicing digital equipment. Since servicing usually falls to other 
people, poor designers are not forced to live with their abominations. 
Hardware will need repair. Digital devices should be simple and 
modular so that other people can perform the maintenance. The use of 
functional building blocks and the separation of architecture from 
control both encourage modular design. 

(c) Absence of tricks. Digital design affords unbounded opportunity for 
clever tricks. Such trickery should not be, but often is, confused with 
good design. We can benefit from the experience of computer 
programmers who, after years of maneuvering bits in clever ways, have 
come to realize that systematic, clear methods yield far more dividends 
than cute but obscure tricks. 

Perhaps we can sum up good design philosophy in a single phrase: common 
courtesy. Consider the users and maintainers of your system, and ask yourself 
what they will need in order to deal efficiently with your creation. Let courtesy 
be your guide. 

Summary of Design Guidelines 
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Here we bring together the three forms of design guidance presented in this 
chapter. 

Basic Approach to Solving a Digital Problem 

(a) Design from the top down. 
(b) Separate the architecture from the control. 
(c) Refine the design, letting the control algorithm and the 

architecture influence each other as you converge on the 
solution. 

Technical Design Considerations 

(a) Use synchronous (clocked) design techniques. 
(b) Avoid asynchronous inputs in the algorithm. 
(c) Make your designs static—independent of clock speed. 

A Courteous Philosophy 
(a) Develop good documentation during the design. 
(b) Keep designs modular and simple. 
(c) Avoid obscure tricks. 

In Chapter 6, we will work out several design examples. In the process, you will 
see the design tools in action and study in their proper context a number of 
common design situations and their handling. 

So now begins the actual design! 
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EXERCISES 

5-1. Sketch a general method for the top-down solution of a digital problem. 

5-2. How does the ASM chart differ from a software flowchart? Using Fig. 5-8 
as an illustration, explain the fundamental differences in viewpoint. 

5-3. What is meant by "active clock edge"? 

5-4. What is a state time? In a synchronous system, what determines the 
duration of the state time? 

5-5. Draw diagrams to illustrate the following 

(a) A four-state cyclic (sequential) ASM. 

(b) A three-state ASM with a fixed sequence of states containing a 
conditional output. 

(c) A two-state ASM with a two-way branch in one state and no 
conditional outputs. 

(d) A four-state ASM that can produce this sequence of states: S1, S3, 
S2, S1, S4, S2, S1, S1, S1, ... . 

5-6. Explain the difference between an ASM input and an ASM output. 

5-7. What is the difference between an ASM conditional branch and an ASM 
conditional output? Does one imply the other? 

5-8. In a synchronous ASM, an unconditional output is stable for virtually the 
entire duration of the state. For what period is a conditional output stable? 

5-9. Produce ASM charts that perform each of the following software 
operations: 

(a) If X = N, then ... . 

(b) If X = N, then . . . ; else . . . 

(c) For X from A to B step C, do ... . 

(d) While X = Y, do ... . 

5-10.  Here is a two-state ASM: 
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(a) Convert the ASM into a form that has a single decision box of the form 
below, with eight branches: 

 
(b) Implement the original ASM and your modification. From the 

viewpoint of the implementer, which form is best? 

5-11. Using timing diagrams, show the difference between these two ASMs: 

 

 

 
5-12. In many instances, we may remove a conditional output from an ASM by 

creating a new state dedicated to generating the old conditional output 
(see the diagrams in Exercise 5-11). Under what circumstances will this 
translation produce difficulties? 

5-13. A conditional output is a function of both state and path. In a logic 
equation for a conditional output, what logic operator connects the state 
term with the path term? In other words, what logic operator corresponds 
to the box in the equation 

Conditional.output = State Path 

5-14. The ASM notation 

 
can be used to indicate that “A assumes the value of B at this time." 
Show that this notation may be viewed as a shorthand for an ASM state 
that contains a test and a conditional output. 

5-15. Consider the following fragments of an ASM chart. Carefully state 
what, if anything, is wrong with or objectionable about these notations. 

 
(a) 

 
(b) 

 
(c) 
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5-16. What is a state generator? With an encoded state assignment, how many 
states can four state variables specify? 

5-17. Some older design methods lump the controller and architecture of Fig. 
5-1 into the combinational logic of Fig. 5-10. Why is this poor practice? 

5-18. Design a one-hot controller for Fig. 5-8. 

5-19. Produce a realization of the ASM in Fig. 5-9 that is equivalent to Fig. 5-
11 but with the state assignment P = 00, Q = 01, R = 10. Is there any 
difference in hardware complexity? 

5-20. Can you make a state assignment in Fig. 5-9 that will simplify the 
hardware for generating CMD1 ? 

5-21. Design a traditional state generator for the ASM in Fig. 5-20, using D 
flip-flops. 

5-22. Design a one-hot controller for this ASM. What special precaution must 
you take when using the one-hot method? 
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5-23. Devise implementations, including circuit diagrams, for this synchronous 
ASM, using each of the state-generation techniques given below. 

 
(a) traditional controller, using gates or modules in your simulator 

library. 

(b) One hot controller, using gates or modules in your simulator 
library. 

(c) Verify both constructions using a simulator 

5-24. Perform Exercise 5-23 for this ASM. Generate W with a JK flip-flop and 
N with an enabled D flip-flop. The notation "Z:Y" implies "Z assumes 
the value of Y at this time" (see Exercise 5-14). 
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5-25. The logic equation for an ASM output has terms involving distinct logic 
variables for each ASM state in which the output appears. 

(a) For a state generator with encoded state assignments, show a standard 
and systematic method of transforming the state code into logic 
variables for each state, using a decoder. 

(b) Instead of using a decoder, we can generate ASM outputs with AND 
gates to decode the required logic variables for states from the state 
code. Demonstrate this method. When would you use this method in 
preference to the method of part (a)? 

5-26. In the one-hot state generator method, show how logic equations are 
generated for conditional and unconditional outputs. Is output signal 
generation simpler with the one-hot method than with the traditional 
method? 

5-27. Use two 8-input priority encoders to detect when more than 1 bit is true 
in an 8-bit quantity. (Hint: Connect the input signals to each of the 
encoders, but in opposite order.) Can this design be extended to more 
than 8 bits? Show a use of this circuit in the design of one-hot controllers 
to handle the two-hot problem. 

5-28. Consider the following eight-state cyclic ASM: 

 
Design state generators for this ASM as a one-hot controller, and a binary 
counter. Which method is simplest in this special case? 

5-29. Why is the clock such an important element in a synchronous design? 

5-30. What is meant by "gating the clock"? Why is this practice dangerous? 

5-31. For the ASM in Fig. 5-19, show with a timing diagram how the 
asynchronous input IN* can cause a transition race. 

5-32. Using Fig. 5-19, demonstrate an output race. 

5-33. How may you avoid races in your designs? Suppose that, contrary to our 
basic design approach, you must deal with a synchronous ASM that tests 
an asynchronous input T2*, as shown below. The logic-level timing 
diagram shows the condition of three signals over a period of six state 
times. Complete the logic-level timing diagram for the signals OUT1, 
OUT2, and OUT3.  
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5-35. In Fig. 5-11, assume that the propagation delay of gates and flip-flops is 

tp 

(a) How much clock skew is tolerable between flip-flops A and B during 
the transition from state 11 to state 00? 

(b) Repeat part (a) for the transition 10  00. 

(c) Repeat part (a) for the transition 01  00. 

(d)  


